
Chapter 1

Introduction

In this chapter, we pitch the field and introduce the topic of the book, namely cryp-
tography, at a high operating altitude and level of abstraction. More specifically,
we elaborate on cryptology (including cryptography) in Section 1.1, address crypto-
graphic systems (or cryptosystems for short) in Section 1.2, provide some historical
background information in Section 1.3, and outline the rest of the book in Section
1.4. The aim is to lay the foundations to understand and put into perspective the
different book contents.

1.1 CRYPTOLOGY

The termcryptologyis derived from the Greek words “kryptós,” meaning “hidden,”
and “lógos,” meaning “word.” Consequently, the term cryptology can be paraphrased
as “hidden word.” This refers to the original intent of cryptology, namely to hide the
meaning of words and to protect the confidentiality and secrecy of the respective data
accordingly. As will (hopefully) become clear throughout the book, this viewpoint
is too narrow, and the term cryptology is currently used for many other security-
related purposes and applications in addition to the protection of the confidentiality
and secrecy of data.

More specifically, cryptology refers to the mathematical science and field of
study that comprises cryptography and cryptanalysis.

• The term cryptography is derived from the Greek words “kryptós” (see
above) and “gráphein,” meaning “to write.” Consequently, the meaning of
the term cryptography can be paraphrased as “hidden writing.” According
to the Internet security glossary provided in Request for Comments (RFC)
4949 [1], cryptography also refers to the “mathematical science that deals with

1

DR
AF

T
VE

RS
IO

N

2 Cryptography 101: From Theory to Practice

transforming data to render its meaning unintelligible (i.e., to hide its semantic
content), prevent its undetected alteration, or prevent its unauthorized use.
If the transformation is reversible, cryptography also deals with restoring
encrypted data to intelligible form.” Consequently, cryptography refers to the
process of protecting data in a very broad sense.

• The termcryptanalysisis derived from the Greek words “kryptós” (see above)
and “analýein,” meaning “to loosen.” Consequently, the meaning of the term
can be paraphrased as “to loosen the hidden word.” This paraphrase refers to
the process of destroying the cryptographic protection, or—more generally—
to study the security properties and possibilities to break cryptographic tech-
niques and systems. Again referring to [1], the term cryptanalysis refers to the
“mathematical science that deals with analysis of a cryptographic system in
order to gain knowledge needed to break or circumvent1 the protection that
the system is designed to provide.” As such, the cryptanalyst is the antago-
nist of the cryptographer, meaning that his or her job is to break or—more
likely—circumvent the protection that the cryptographer has designed and
implemented in the first place. Quite naturally, there is an arms race going on
between the cryptographers and the cryptanalysts (but note that an individual
person may have both skills, cryptographic and cryptanalytical ones).

Many other definitions for the terms cryptology, cryptography, and crypt-
analysis exist and can be found in the literature (or on the Internet, respectively). For
example, the term cryptography is sometimes said to more broadly refer to the study
of mathematical techniques related to all aspects of information security (e.g., [2]).
These aspects include (but are not restricted to) data confidentiality, data integrity,
entity authentication, data origin authentication, nonrepudiation, and/or many more.
Again, this definition is broad and comprises anything that is directly or indirectly
related to information security.

In some literature, the term cryptology is even said to include steganography
(in addition to cryptography and cryptanalysis).

• The termsteganographyis derived from the Greek words “steganos,” meaning
“impenetrable,” and “gráphein” (see above). Consequently, the meaning of
the term can be paraphrased as “impenetrable writing.” According to [1], the

1 In practice, circumventing (bypassing) the protection is much more common than breaking it.
In his 2002 ACM Turing Award Lecture (https://amturing.acm.org/vp/shamir2327856.cfm or
https://www.youtube.com/watch?v=KUHaLQFJ6Cc), for example, Adi Shamir—a coinventor of
the RSA public key cryptosystem—made the point that “cryptography is typically bypassed, not
penetrated,” and this point was so important to him that he put it as a third law of security (in
addition to “absolutely secure systems do not exist” and “to halve your vulnerability you have to
double your expenditure”).

DR
AF

T
VE

RS
IO

N

Introduction 3

term refers to “methods of hiding the existence of a message or other data.
This is different than cryptography, which hides the meaning of a message
but does not hide the message itself.” Let us consider an analogy to clarify
the difference between steganography and cryptography: if we have money
to protect or safeguard, then we can either hide its existence (by putting
it, for example, under a mattress), or we can put it in a safe that is as
burglarproof as possible. In the first case, we are referring to steganographic
methods, whereas in the second case, we are referring to cryptographic ones.
An example of a formerly widely used steganographic method is invisible
ink. A message remains invisible, unless the ink is subject to some chemical
reaction that has the message reappear and become visible again. Currently
deployed steganographic methods are much more sophisticated, and can, for
example, be used to hide information in files. In general, this information is
arbitrary, but it is typically used to identify the owner or the recipient of a file.
In the first case, one refers todigital watermarking, whereas in the second
case one refers todigital fingerprinting. Both types of watermarks are subject
to research and development.

The relationship between cryptology, cryptography, cryptanalysis, and stega-
nography is illustrated in Figure 1.1. In this book, we only focus on cryptography
in a narrow sense (this is symbolized with the shaded box in Figure 1.1). This can
also be stated as a disclaimer: we elaborate on cryptanalysis only where necessary
and appropriate, and we do not address steganography at all. There are other
books that address cryptanalysis (e.g., [3–5]) or provide useful information about
steganography in general (e.g., [6, 7]) and digital watermarking and fingerprinting
in particular (e.g., [8, 9]).

Figure 1.1 The relationship among cryptology, cryptography, cryptanalysis, and steganography.

Interestingly, cryptographic and steganographic technologies and techniques
are not mutually exclusive, and it may make a lot of sense to combine them. For

DR
AF

T
VE

RS
IO

N

4 Cryptography 101: From Theory to Practice

example, the open source disk encryption software VeraCrypt2 employs stegano-
graphic techniques to hide the existence of an encrypted disk volume (known as a
“hidden volume”). It is possible and likely that we will see more combinations of
cryptographic and steganographic technologies and techniques in future products.

1.2 CRYPTOGRAPHIC SYSTEMS

According to [1], the termcryptographic system3 (or cryptosystem) refers to “a
set of cryptographic algorithms together with the key management processes that
support use of the algorithms in some application context.” Again, this definition is
fairly broad and comprises all kinds of cryptographic algorithms and—as introduced
below—protocols. Hence, the notion of an algorithm4 captured in Definition 1.1 is
key for cryptographic systems.

Definition 1.1 (Algorithm) An algorithm is a well-defined computational proce-
dure that takes a value as input and turns it into another value that represents the
output.

In addition to being well-defined, it is sometimes required that the algorithm halts
within a reasonable amount of time (for any meaningful definition of “reasonable”).
Also, Definition 1.1 is rather vague and not mathematically precise. It neither states
the computational model for the algorithm, nor does it say anything about the
problem the algorithm is supposed to solve, such as, for example, computing a
mathematical function. Consequently, from a theoretical viewpoint, an algorithm
can be more precisely defined as a well-defined computational procedure for a well-
defined computational model for solving a well-defined problem. This definition,
however, is a little bit clumsy and therefore not widely used in field. Instead, people
usually prefer the simpler (and more intuitive) definition stated above.

In practice, a major distinction is made between algorithms that are determin-
istic and algorithms that are not (in which case they are probabilistic or randomized).

2 VeraCrypt (https://www.veracrypt.fr) is a fork of the formerly very popular but discontinued
TrueCrypt project.

3 In some literature, the termcryptographic schemeis used to refer to a cryptographic system.
Unfortunately, it is seldom explained what the difference is between a (cryptographic) scheme
and a system. So for the purpose of this book, we don’t make a distinction, and we use the term
cryptographic system to refer to either of them. We hope that this simplification is not too confusing.
In the realm of digital signatures, for example, people often use the term digital signature scheme
that is not used in this book. Instead, we consistently use the term digital signature system to refer
to the same construct.

4 The termalgorithm is derived from the name of the mathematician Mohammed ibn-Musa al-
Khwarizmi, who was part of the royal court in Baghdad and lived from about 780 to 850.

DR
AF

T
VE

RS
IO

N

Introduction 5

• An algorithm isdeterministicif its behavior is completely determined by the
input. This also means that the algorithm always generates the same output
for the same input (if executed multiple times).

• An algorithm isprobabilistic(or randomized) if its behavior is not completely
determined by the input, meaning that the algorithm internally employs some
(pseudo)random values.5 Consequently, a probabilistic (or randomized) algo-
rithm may generate different outputs each time it is executed with the same
input.

Today, probabilistic algorithms play a much more important role in cryptog-
raphy than they used to play in the past. Anyway, an algorithm may be implemented
by a computer program that is written in a specific programming language, such as
Pascal, C, or Java. Whenever we describe algorithms in this book, we don’t use a
specific programming language, but we use a more formal and simpler notation that
looks as follows:

(input parameters)

computational step
. . .

computational step

(output parameters)

The input and output parameters are written in brackets at the beginning and
at the end of the algorithm description, whereas the body of the algorithm consists
of a sequence of computational steps that are executed in the specified order (or
sometimes in parallel). Throughout the book, we introduce some cryptosystems as
sets of algorithms that are each written in this notation.

If more than one entity is involved in the execution of an algorithm (or
the computational procedure it defines, respectively), then one is in the realm of
protocols—a term that originates from diplomacy. Definition 1.2 captures the notion
of a protocol.

Definition 1.2 (Protocol) A protocol is a distributed algorithm in which two or
more entities take part.

Alternatively, one can define a protocol as a distributed algorithm in which
a set of more than one entity (instead of two or more entities) takes part. In this
case, it is intuitively clear that an algorithm also represents a protocol, namely one

5 A value is random (pseudorandom) if it is randomly (pseudorandomly) generated.

DR
AF

T
VE

RS
IO

N

6 Cryptography 101: From Theory to Practice

that is degenerated in the sense that the set consists of just one entity. Hence, an
algorithm can also be seen as a special case of a protocol. The major distinction
between an algorithm and a protocol is that only one entity is involved in the former,
whereas two or more entities are involved in the latter. This distinguishing fact is
important and must be kept in mind when one talks about algorithms and protocols—
not only cryptographic ones. It means that in a protocol the different entities may
have to send messages to each other, and hence that a protocol may also comprise
communication steps (in addition to computational steps). As such, protocols tend
to be more involved than algorithms and this also affects their analysis.

Similar to an algorithm, a protocol may be deterministic or probabilistic,
depending on whether the protocol internally employs random values. For the
purpose of this book, we are mainly interested in cryptographic algorithms and
protocols as suggested in Definitions 1.3 and 1.4.

Definition 1.3 (Cryptographic algorithm) A cryptographic algorithmis an algo-
rithm that employs and makes use of cryptographic techniques and mechanisms.

Definition 1.4 (Cryptographic protocol) A cryptographic protocolis a protocol
that employs and makes use of cryptographic techniques and mechanisms.

Remember the definition for a cryptographic system (or cryptosystem) given
at the beginning of this section. According to this definition, a cryptosystem may
comprise more than one algorithm, and the algorithms need not be executed by
the same entity, that is, they may be executed by multiple entities in a distributed
way. Consequently, this notion of a cryptosystem also captures the notion of a
cryptographic protocol as suggested in Definition 1.4. Hence, another way to look
at cryptographic algorithms and protocols is to say that a cryptographic algorithm
is asingle-entity cryptosystem, whereas a cryptographic protocol is amulti-entityor
multiple entities cryptosystem. These terms, however, are not used in the literature,
and hence we don’t use them in this book either.

At this point in time, it is important to note that a typical cryptographic ap-
plication may consist of multiple (cryptographic) protocols, that these protocols and
their concurrent execution may interact in subtle ways, and that the respective inter-
dependencies may be susceptible tomulti-protocol attacks.6 As its name suggests,
more than one protocol is involved in such an attack, and the adversary may employ
messages from one protocol execution to construct valid-looking messages for other
protocols and executions thereof. If, for example, one protocol uses digital signatures
for random-looking data and another protocol is an authentication protocol in which

6 The notion of achosen protocolor multi-protocol attackfirst appeared in a 1997 paper [10], but the
problem had certainly preexisted before that.

DR
AF

T
VE

RS
IO

N

Introduction 7

an entity must digitally sign a nonce7 to authenticate itself, then an adversary can
use the first protocol as an oracle to digitally sign a nonce from an execution of the
second protocol. This is a simple and devastating attack that can be mitigated easily
(for example, by using two distinct keys). However, more involved interactions and
interdependencies are possible and likely exist, and hence multi-protocol attacks
tend to be powerful and difficult to mitigate. Fortunately, many such attacks have
been described in scientific papers, but only few have been mounted in the field so
far—at least as far as we know today.

In the cryptographic literature, it is common to use human names for entities
that participate in cryptographic protocols, such as a Diffie-Hellman key exchange.
For example, in a two-party protocol the participating entities are usually calledAlice
andBob. This is a convenient way of making things unambiguous with relatively few
words, since the pronounshecan be used for Alice, andhecan be used for Bob. The
disadvantage of this naming scheme is that people automatically assume that the
entities refer to human beings. This need not be the case though, and Alice, Bob,
and all other entities are rather computer systems, cryptographic devices, hardware
modules, smartcards, or anything along these lines. In this book, we don’t follow
the tradition of using Alice, Bob, and the rest of the gang. Instead, we use single-
letter characters, such as A, B, and so on, to refer to the entities that take part
and participate in a cryptographic protocol. This is admittedly less fun, but more
appropriate and in line with the traditional notation used in information theory (see,
for example, [11] for a more comprehensive reasoning about this issue). In reality,
the entities refer to social-technical systems that may have a user interface, and the
question of how to properly design and implement such an interface is key to the
overall security of the system. If this interface is not appropriate, then phishing and
many other types of social engineering attacks become trivial to mount.

The cryptographic literature provides many examples of more or less useful
cryptographic protocols. Some of these protocols are overviewed, discussed, and
put into perspective in this book. To formally describe a (cryptographic) protocol
in which A and B take part, we use the notation given at the top of the next page.
Some input parameters may be required on either side of the protocol (note that the
input parameters need not be the same). The protocol then includes a sequence of
computational and communication steps. Each computational step may occur only
on one side of the protocol, whereas each communication step requires data to be
transferred from one side to the other. In this case, the direction of the data flow
is indicated by an arrow. The set of all data that is communicated this way refers
to a protocol transcript. Finally, some parameters may be output on either side of
the protocol. These output parameters actually represent the result of the protocol

7 The termnoncerefers to a “number that is used only once.” More specifically, it is a random-looking
number that is fresh and unique.

DR
AF

T
VE

RS
IO

N

8 Cryptography 101: From Theory to Practice

execution. Similar to the input parameters, the output parameters need not be the
same on either side. In many cases, however, the output parameters are the same. In
the case of the Diffie-Hellman key exchange, for example, the output is the session
key that can subsequently be used to secure communications. But we will explain
this in detail in Section refDiffieHellmanKeyExchange.

A B
(input parameters) (input parameters)

.
computational step computational step

.
Ð→

. . .
←Ð

.
computational step computational step

.

(output parameters) (output parameters)

1.2.1 Classes of Cryptographic Systems

Cryptographic systems may or may not use secret parameters (e.g., cryptographic
keys), and if such parameters are used, then they may or may not be shared among
the participating entities. Consequently, there are three classes of cryptographic
systems that can be distinguished.8 They are captured in Definitions 1.5–1.7.

Definition 1.5 (Unkeyed cryptosystem)An unkeyed cryptosystemis a crypto-
graphic system that uses no secret parameter.

Definition 1.6 (Secret key cryptosystem)A secret key cryptosystemis a crypto-
graphic system that uses secret parameters that are shared among the participating
entities.

Definition 1.7 (Public key cryptosystem)A public key cryptosystemis a crypto-
graphic system that uses secret parameters that are not shared among the partici-
pating entities.

In Chapter 2, we informally introduce and briefly overview the most important
representatives of these classes. These representatives are then formally addressed

8 The classification scheme was created by Ueli M. Maurer.

DR
AF

T
VE

RS
IO

N

Introduction 9

in Part I (unkeyed cryptosystems), Part II (secret key cryptosystems), and Part III
(public key cryptosystems) of the book. In these parts, we also provide more formal
definitions of both the cryptosystems and their security properties. In the rest of this
section, we continue to argue informally about the security of cryptographic systems
and the different perspectives one may take to look at them.

1.2.2 Secure Cryptographic Systems

The goal of cryptography is to design, implement, and employ cryptographic sys-
tems that are “secure.” But to make precise statements about the security of a partic-
ular cryptosystem, one must formally define the term security. Unfortunately, reality
looks different, and the literature is full of cryptographic systems that are claimed to
be secure without providing an appropriate definition for it. This is dissatisfactory,
mainly because anything can be claimed to be secure, unless the meaning of the
word is precisely nailed down.

Instead of properly defining the term security and analyzing whether a cryp-
tographic system meets this definition, people often like to argue about key lengths.
This is because the key length is a simple and very intuitive security parameter. So
people frequently use it to characterize the cryptographic strength of a system. This
is clearly an oversimplification, because the key length is a suitable (and meaningful)
measure of security if and only if an exhaustive key search is the most efficient way
to break it. In practice, however, this is seldom the case, and there are often simpler
ways to break the security of a system (e.g., by reading out some keying material
from memory). In this book, we avoid discussions about key lengths. Instead, we
refer to the recommendations9 compiled and hosted by a Belgian company named
BlueKrypt.10 They provide practical advice to decide what key lengths are appro-
priate for any given cryptosystem (even using different methods that may lead to
different conclusions and recommendations).

In order to discuss the security of a cryptosystem, there are two perspectives
one may take: a theoretical one and a practical one. Unfortunately, the two perspec-
tives are fundamentally different, and one may have a cryptosystem that is theoret-
ically secure but practically insecure (e.g., due to a poor implementation), or—vice
versa—a cryptosystem that provides a sufficient level of security in practice but
is not very sophisticated from a theoretical viewpoint. Let us have a closer look
at both perspectives before we focus on some general principles for the design of
cryptographic systems.

9 https://www.keylength.com.
10 https://www.bluekrypt.com.

DR
AF

T
VE

RS
IO

N

10 Cryptography 101: From Theory to Practice

1.2.2.1 Theoretical Perspective

According to what has been said above, one has to start with a precise definition
for the term “security” before one can scientifically argue about the security of a
particular cryptosystem. What does it mean for such a system to be “secure”? What
properties does it have to fulfill? In general, there are two questions that need to be
answered here:

1. Who is the adversary; that is, what are his or her capabilities and how powerful
is he or she?

2. What is the task the adversary has to solve in order to be successful; that is, to
break the security of the system?

An answer to the first question must comprise athreats model, i.e., a model
of the adversary one has in mind and against whom one wants to protect oneself.
This adversary must be described (and hence modeled) in terms of computational
resources, memory, time, and a priori information that are available, as well as the
types of attacks that are feasible to mount (including, for example, whether the
adversary has physical access to the system under attack). Such a threats model
is subtle and highly relevant. If, for example, an adversary is tasked to remove the
shell from an egg but has no physical access to the egg, then it is fairly simple to
argue that the shell cannot be removed. However, the resulting (security) argument
is also irrelevant, mainly because anybody tasked to remove an egg shell will also
be given physical access to the egg.

Finding an appropriate answer to the second question is even more tricky. In
general, the adversary’s task is to find (i.e., compute, guess, or otherwise determine)
one or several pieces of information that he or she should not be able to know.
If, for example, the adversary is able to determine the cryptographic key used to
encrypt a message, then he or she must clearly be considered to be successful. But
what if he or she is able to determine only half of the key, or—maybe even more
controversial—a single bit of the key? Similar difficulties in defining an appropriate
task for the adversary occur in other cryptosystems that are used for other purposes
than confidentiality protection.

The preferred way to deal with these difficulties is to define asecurity game
in the so-calledideal/real simulation paradigmthat is illustrated in Figure 1.2. On
the left side, there is a system that is eitherideal or real, meaning that it is either
a theoretically perfect system for the task one has in mind (ideal system) or it is a
real-world implementation thereof (real system). If, for example, the real system is a
block cipher used for symmetric encryption, then the ideal system can be thought
of as a pseudorandom permutation. The adversary on the right side can interact

DR
AF

T
VE

RS
IO

N

Introduction 11

Figure 1.2 Security game in the ideal/real simulation paradigm.

with the (ideal or real) system in some predefined way, and his or her task is to
tell the two cases apart. Again referring to a block cipher, it may be the case that the
adversary can have arbitrary plaintext messages be encrypted or arbitrary ciphertext
messages be decrypted. The type of interaction matters and must therefore be part
of the specification of the security game. In either case, the adversary wins the game
if he or she is able to tell whether he or she is interacting with an ideal or a real
system with a probability that is better than guessing. If the adversary is not able to
do so, then the real system is indistinguishable from an ideal one, and hence it has
all the relevant properties of the ideal system, including its security. It is therefore
as secure as the ideal system. Most security proofs in cryptography follow this line
of argumentation and define the task the adversary needs to solve (in order to be
successful) in such a game-theoretic way. We will see many examples throughout
the book.

As captured in Definition 1.8, a definition for a secure cryptographic system
must start with the two questions itemized above and their respective answers.

Definition 1.8 (Secure cryptographic system)A cryptographic system issecureif
a well-defined adversary cannot break it, meaning that he or she cannot solve a
well-defined task.

This definition gives room for several notions of security. In principle, there is
a distinct notion for every possible adversary combined with every possible task. As
a general rule of thumb, we say that strong security definitions assume an adversary
that is as powerful as possible and a task to solve that is as simple as possible. If
a system can be shown to be secure in this setting, then there is a security margin.
In reality, the adversary is likely less powerful and the task he or she must solve is

DR
AF

T
VE

RS
IO

N

12 Cryptography 101: From Theory to Practice

likely more difficult, and this, in turn, means that it is very unlikely that the security
of the system gets broken.

Let us consider a provocative question (or mind experiment) to clarify this
point: If we have two safesS1 andS2, whereS1 cannot be cracked by a schoolboy
within one minute andS2 cannot be cracked by a group of world-leading safe crack-
ers within one year, and we ask the question whetherS1 or S2 can be considered to
be more secure, then we would unanimously opt forS2. The argument would go as
follows: If even a group of world-leading safe crackers cannot crackS2 within one
year, then it very unlikely that a real-world criminal is able to crack it in a shorter
but more realistic amount of time, such as one hour. In contrast, the security levelS1

provides is much less convincing. The fact that even a schoolboy can crackS1 within
one minute makes us believe that the criminal is likely to be successful in cracking
the safe within one hour. This gives us a much better feeling about the security of
S2. In cryptography, we use a similar line of argumentation when we talk about the
strength of a security definition.

If we say that an adversary cannot solve a task, then we can still distinguish the
two cases in which he or she is simply not able solve it (independent from his or her
computational resources) or he or she can in principle solve it but doesn’t have the
computational resources to do so, meaning that it is computationally too expensive.
This distinction brings us to the following two notions of security.

Unconditional security: If an adversary with infinite computational resources is
not able to solve the task within a finite amount of time, then we are talk-
ing aboutunconditionalor information-theoretic security. The mathematical
theories behind this notion of security are probability theory and information
theory, as briefly introduced in Appendixes B and C.

Conditional security: If an adversary is in principle able to solve the task within
a finite amount of time but doesn’t have the computational resources to
do so,11 then we are talking aboutconditional or computational security.
The mathematical theory behind this notion of security is computational
complexity theory, as briefly introduced in Appendix D.

The distinction between unconditional and conditional security is at the core of
modern cryptography. Interestingly, there are cryptosystems known to be secure in
the strong sense (i.e., unconditionally or information-theoretically secure), whereas
there are no cryptosystems known to be secure in the weak sense (i.e., conditionally
or computationally secure). There are many cryptosystems that are assumed to be
computationally secure, but no proof is available for any of these systems. In fact,
not even the existence of a conditionally or computationally secure cryptosystem

11 It is usually assumed that the adversary can run algorithms that have a polynomial running time.

DR
AF

T
VE

RS
IO

N

Introduction 13

has been proven so far. The underlying problem is that it is generally impossible
to prove a lower bound for the computational complexity of solving a problem. To
some extent, this is an inherent weakness or limitation of complexity theory as it
stands today.

In addition to the unconditional and conditional notions of security, people
often use the termprovable securityto refer to another—arguably strong—notion
of security. This goes back to the early days of public key cryptography, when
Whitfield Diffie and Martin E. Hellman proposed a key exchange protocol [12]12

(Section 12.3) and a respective security proof. In fact, they showed that their protocol
is secure unless somebody is able to solve a hard mathematical problem (that is
strongly related to the discrete logarithm problem). The security of the protocol is
thus reduced to a hard mathematical problem (i.e., if somebody is able to solve
the mathematical problem, then he or she is also able to break the security of
the protocol). This is conceptually similar to proving that squaring a circle with
compass and straightedge is impossible. This well-known fact from geometry can
be proven by reducing the problem of squaring a circle to the problem of finding a
non-zero polynomialf(x) = anxn + . . . + a1x + a0 with rational coefficientsai for
i = 0,1, . . . , n, such thatπ is a root; that is,f(π) = 0. Because we know thatπ is
not algebraic (it is transcendental), we know that such a polynomial does not exist
and cannot be found in the first place. Conversely, this implies that a circle cannot
be squared with a compass and straightedge.

More specifically, the basic concept of a reduction proof is to show that break-
ing a cryptosystem is computationally equivalent to solving a hard mathematical
problem. This means that one must prove the following two directions:

• If the hard problem can be solved, then the cryptosystem can be broken.

• If the cryptosystem can be broken, then the hard problem can be solved.

Diffie and Hellman only proved the first direction, and they did not prove
the second direction.13 This is unfortunate, because the second direction is equally
important for security. If we can prove that an adversary who is able to break a
cryptosystem is also able to solve the hard problem, then we can reasonably argue
that it is unlikely that such an adversary exists, and hence that the cryptosystem
in question is likely to be secure. Michael O. Rabin14 was the first researcher who

12 This paper is the one that officially gave birth to public key cryptography. There is a companion
paper entitled “Multiuser Cryptographic Techniques” that was presented by the same authors at the
National Computer Conference on June 7–10, 1976.

13 This was changed in [13] and some follow-up publications.
14 In 1976, Michael O. Rabin and Dana S. Scott jointly received the ACM Turing Award for their work

on nondeterministic machines that is key to theoretical computer science and complexity theory.
This work was not yet directly related to cryptography.

DR
AF

T
VE

RS
IO

N

14 Cryptography 101: From Theory to Practice

proposed a cryptosystem [14] that can be proven to be computationally equivalent
to a mathematically hard problem (Section 13.3.2).

The notion of (provable) security has fueled a lot of research since the late
1970s. In fact, there are many (public key) cryptosystems proven secure in this sense.
It is, however, important to note that a complexity-based proof is not absolute, and
that it is only relative to the (assumed) intractability of the underlying mathematical
problem(s). This is a similar situation to proving that a problem isNP-hard. It
proves that the problem is at least as difficult as other problems inNP, but it does
not provide an absolute proof of its computational difficulty.15

There are situations in which a security proof requires an additional as-
sumption, namely that a cryptographic primitive–typically a cryptographic hash
function—behaves like a random function. This leads to a new paradigm and
methodology to design cryptographic systems that are “provably secure” in theran-
dom oracle model(in contrast to thestandard model) [15]. The methodology em-
ploys the idea of an ideal system (as introduced above) and consists of the following
three steps:

• First, one designs an ideal system that uses random functions16 (also known
as random oracles), most notably cryptographic hash functions.

• Second, one proves the security of the ideal system.

• Third, one replaces the random functions with real ones.

As a result, one obtains an implementation of the ideal system in the real world
(where random functions do not exist). Due to the use of random oracles, this
methodology is known asrandom oracle methodology, and—as mentioned above—
it yields cryptosystems that are secure in the random oracle model. As further ad-
dressed in Section 8.3, such cryptosystems and their respective “security proofs”
are widely used in the field, but they must be taken with a grain of salt. In fact,
it has been shown that it is possible to construct cryptographic systems that are
provably secure in the random oracle model, but become totally insecure whenever
the cryptographic hash function used in the protocol (to replace the random oracle)
is instantiated. This theoretical result is worrisome, and since its publication many
researchers have started to think controversially about the random oracle method-
ology and the usefulness of the random oracle model per se. At least it must be
noted that formal analyses in the random oracle model are not security proofs in a
purely mathematical sense. The problem is the underlying ideal assumptions about

15 Refer to Appendix D to get a more detailed overview aboutNPandNP-hard problems.
16 The notion of a random function is briefly introduced in Section 2.1.2 and more thoroughly

addressed in Chapter 8.

DR
AF

T
VE

RS
IO

N

Introduction 15

the randomness properties of the cryptographic hash functions, this is not something
that is otherwise used in mathematically rigorous proofs.

In this book, we don’t consider provable security (with or without the random
oracle model) as a security notion of its own. Instead, we see it as a special case of
conditional security, namely one where the intractability assumption represents the
condition.

1.2.2.2 Practical Perspective

So far, we have argued about the security of a cryptosystem from a purely theoretical
viewpoint. In practice, however, any (theoretically secure) cryptosystem must be
implemented, and there are many things that can go wrong here (e.g., [16]). For
example, the cryptographic key in use may be kept in memory and extracted from
there, for example, using a cold boot attack17 [17], or the user of a cryptosystem may
be subject to all kinds of phishing and social engineering attacks.

Historically, the first such attacks tried to exploit the compromising emana-
tions that occur in all information-processing physical systems. These are uninten-
tional intelligence-bearing signals that, if intercepted and properly analyzed, may
disclose the information transmitted, received, handled, or otherwise processed by
a piece of equipment. In the late 1960s and early 1970s, the U.S. National Secu-
rity Agency (NSA) coined the termTEMPESTto refer to this field of study (i.e.,
to secure electronic communications equipment from potential eavesdroppers), and
vice versa, the ability to intercept and interpret those signals from other sources.18

Hence, the term TEMPEST is a codename (not an acronym19) that is used broadly to
refer to the entire field of emission security or emanations security (EMSEC). There

17 This attack exploits the fact that many dynamic random access memory (DRAM) chips don’t lose
their contents when a system is switched off immediately, but rather lose their contents gradually
over a period of seconds, even at standard operating temperatures and even if the chips are removed
from the motherboard. If kept at low temperatures, the data on these chips persist for minutes
or even hours. In fact, the researchers showed that residual data can be recovered using simple
techniques that require only temporary physical access to a machine, and that several popular disk
encryption software packages, such as Microsoft’s BitLocker, Apple’s FileVault, and TrueCrypt (the
predecessor of VeraCrypt) were susceptible to cold boot attacks. The feasibility and simplicity of
such attacks has seriously challenged the security of many disk encryption software solutions.

18 https://www.nsa.gov/news-features/declassified-documents/cryptologic-
spectrum/assets/files/tempest.pdf.

19 The U.S. government has stated that the term TEMPEST is not an acronym and does not have any
particular meaning (it is therefore not included in this book’s list of abbreviations and acronyms).
However, in spite of this disclaimer, multiple acronyms have been suggested, such as “Transmitted
Electro-Magnetic Pulse / Energy Standards & Testing,” “Telecommunications ElectroMagnetic Pro-
tection, Equipment, Standards & Techniques,” “Transient ElectroMagnetic Pulse Emanation STan-
dard,” “Telecommunications Electronics Material Protected from Emanating Spurious Transmis-
sions,” and—more jokingly—“Tiny ElectroMagnetic Particles Emitting Secret Things.”

DR
AF

T
VE

RS
IO

N

16 Cryptography 101: From Theory to Practice

are several U.S. and NATO standards that basically define three levels of TEMPEST
requirements: NATO SDIP-27 Levels A, B, and C; but this is far beyond the scope
of this book.

In addition to cold boot attacks and exploiting compromising emanations,
people have been very innovative in finding possibilities to mount attacks against
presumably tamper-resistant hardware devices that employ invasive measuring tech-
niques (e.g., [18, 19]). Most importantly, there are attacks that exploit side channel
information an implementation may leak when a computation is performed. Side
channel information is neither input nor output, but refers to some other information
that may be related to the computation, such as timing information or power con-
sumption. Attacks that try to exploit such information are commonly referred to as
side channel attacks. Let us start with two mind experiments to better illustrate the
notion of a side channel attack.20

• Assume somebody has written a secret note on a pad and has torn off the
respective paper sheet. Is there a possibility to reconstruct the note? An obvi-
ous possibility is to go for a surveillance camera and examine the respective
recordings. A less obvious possibility is to exploit the fact that pressing the pen
on the paper sheet may have caused the underlying paper sheet to experience
some pressure, and this, in turn, may have caused the underlying paper sheet
to show the same groove-like depressions (representing the actual writing).
Equipped with the appropriate tools, an expert may be able to reconstruct the
note. Pressing the pen on a paper sheet may have caused a side channel to
exist, even if the original paper sheet is destroyed.

• Consider a house with two rooms. In one room are three light switches and
in the other room are three lightbulbs, but the wiring of the light switches
and bulbs is unknown. In this setting, somebody’s task is to find out the
wiring, but he or she can enter each room only once. From a mathematical
viewpoint, one can argue (and possibly even prove) that this task is impossible
to solve. But from a physical viewpoint (and taking into account side channel
information), the task can be solved: One can enter the room with the light
switches, permanently turn on one bulb, and turn on another bulb for some
time (e.g., a few seconds). One then enters the room with the lightbulbs.
The bulb that is lit is easily identified and refers to the switch that has been
permanently switched on. But the other two bulbs are not lit, and hence one
cannot easily assign them to the respective switches. But one can measure the
temperature of the lightbulbs. The one that is warmer more likely refers to the
switch that has been switched on for some time. This information can be used
to distinguish the two cases and to solve the task accordingly. Obviously, the

20 The second mind experiment was proposed by Artur Ekert.

DR
AF

T
VE

RS
IO

N

Introduction 17

trick is to measure the temperature of the lightbulbs and to use this information
as a side channel.

In analogy to these mind experiments, there are many side channel attacks
that have been proposed to defeat the security of cryptosystems, some of which
have turned out to be very powerful. The first side channel attack that opened
people’s eyes and the field in the 1990s was a timing attack against a vulnerable
implementation of the RSA cryptosystem [20]. The attack exploited the correlation
between a cryptographic key and the running time of the algorithm that employed
the key. Since then, many implementations of cryptosystems have been shown to be
vulnerable against timing attacks and some variants, such as cache timing attacks
or branch prediction analysis. In 2003, it was shown that remotely mounting timing
attacks over computer networks is feasible [21], and since 2018 we know that almost
all modern processors that support speculative and out-of-order command execution
are susceptible to sophisticated timing attacks.21 Other side channel attacks exploit
the power consumption of an implementation of an algorithm that is being executed
(usually called power consumption or power analysis attacks [22]), faults that are
induced (usually named differential fault analysis [23, 24]), protocol failures [25],
the sounds that are generated during a computation [26, 27], and many more.

Side channel attacks exploit side channel information. Hence, a reasonable
strategy to mitigate a specific side channel attack is to avoid the respective side
channel in the first place. If, for example, one wants to protect an implementation
against timing attacks, then timing information must not leak. At first sight, one may
be tempted to add a random delay to every computation, but this simple mechanism
does not work in the field (because the effect of random delays can be compensated
by having an adversary repeat the measurement many times). But there may be other
mechanisms that work. If, for example, one ensures that all operations take an equal
amount of time (i.e., the timing behavior is largely independent from the input), then
one can mitigate such attacks. But constant-time programming has turned out to be
difficult, certainly more difficult than it looks at first sight. Also, it is sometimes
possible to blind the input and to prevent the adversary from knowing the true value.
Both mechanisms have the disadvantage of slowing down the computations. There
are fewer possibilities to protect an implementation against power consumption
attacks. For example, dummy registers and gates can be added on which useless
operations are performed to balance power consumption into a constant value.
Whenever an operation is performed, a complementary operation is also performed
on a dummy element to assure that the total power consumption remains balanced
according to some higher value. Protection against differential fault analysis is less

21 The first such attacks have been namedMeltdown and Spectre. They are documented at
https://www.spectreattack.com.

DR
AF

T
VE

RS
IO

N

18 Cryptography 101: From Theory to Practice

general and even more involved. In [23], for example, the authors suggest a solution
that requires a cryptographic computation to be performed twice and to output the
result only if they are the same. The main problem with this approach is that it
roughly doubles the execution time. Also, the probability that the fault will not occur
twice is not sufficiently small (and this makes the attack harder to implement, but
not impossible). The bottom line is that the development of adequate and sustainable
protection mechanisms to mitigate differential fault analysis attacks remains a timely
research topic. The same is true for failure analysis and acoustic cryptanalysis, and
it may even be true for other side channel attacks that will be found and published
in the future. Once a side channel is known, one can usually do something to avoid
the respective attacks. But keep in mind that many side channels may exist that are
still unknown today.

The existence and difficulty of mitigating side channel attacks have inspired
theoreticians to come up with a model for defining and delivering cryptographic
security against an adversary who has access to information leaked from the physical
execution of a cryptographic algorithm [28]. The original term used to refer to
this type of cryptography isphysically observable cryptography. More recently,
however, researchers have coined the termleakage-resilient cryptographyto refer to
essentially the same idea. Even after many years of research, it is still questionable
whether physically observable or leakage-resilient cryptography can be achieved in
the first place (e.g., [29]). It is certainly a legitimate and reasonable design goal, but
it may not be a very realistic one. Maybe we will know one day.

1.2.2.3 Design Principles

In the past, we have seen many examples in which people have tried to improve the
security of a cryptographic system by keeping secret its design and internal working
principles. This approach is sometimes referred to as “security through obscurity.”
Many of these systems do not work and can be broken trivially.22 This insight has a
long tradition in cryptography, and there is a well-known cryptographic principle—
Kerckhoffs’s principle23—that basically states that a cryptographic system should be
designed so as to remain secure, even if the adversary knows all the details of the
system, except for the values explicitly declared to be secret, such as secret keys
[30]. We follow this principle in this book, and we only address cryptosystems for
which we can assume that the adversary knows the details. This assumption is in
line with our requirement that the adversaries should be assumed to be as powerful
as possible (to obtain the strong security definitions detailed in Section 1.2.2).

22 Note that “security through obscurity” may work outside the realm of cryptography.
23 The principle is named after Auguste Kerckhoffs, who lived from 1835 to 1903.

DR
AF

T
VE

RS
IO

N

Introduction 19

In spite of Kerckhoffs’s principle, the design of a secure cryptographic system
remains a difficult and challenging task. One has to make assumptions, and it is
not clear whether these assumptions really hold in reality. For example, one usually
assumes a certain set of countermeasures to protect against specific attacks. If the
adversary attacks the system in another way, then there is hardly anything that can
be done about it. Similarly, one has to assume the system to operate in a “typical”
environment. If the adversary can manipulate the environment, then he or she may
be able to change the operational behavior of the system, and hence to open up
new vulnerabilities. The bottom line is that cryptographic systems that are based
on make-believe, ad hoc approaches, and heuristics are often broken in the field in
some new and ingenious ways. Instead, the design of a secure cryptographic system
should be based on firm foundations. Ideally, it consists of the following two steps:

1. In a definitional step, the problem the cryptographic system is intended to
solve is identified, precisely defined, and formally specified.

2. In a constructive step, a cryptographic system that satisfies the definition
distilled in step one, possibly while relying on intractability assumptions, is
designed.

Again, it is important to note that most parts of modern cryptography rely
on intractability assumptions and that relying on such assumptions seems to be
unavoidable. But there is still a huge difference between relying on an explicitly
stated intractability assumption or just assuming (or rather hoping) that an ad hoc
construction satisfies some unspecified and vaguely specified goals. This basically
distinguishes cryptography as a science from cryptography as an art.

1.3 HISTORICAL BACKGROUND INFORMATION

Cryptography has a long and thrilling history that is addressed in many books (e.g.,
[31–33]). In fact, probably since the very beginning of the spoken and—even more
importantly—written word, people have tried to transform “data to render its mean-
ing unintelligible (i.e., to hide its semantic content), prevent its undetected alteration,
or prevent its unauthorized use” [1]. According to this definition, these people have
always employed cryptography and cryptographic techniques. The mathematics be-
hind these early systems may not have been very advanced, but they still employed
cryptography and cryptographic techniques. For example, Gaius Julius Caesar24

used an encryption system in which every letter in the Latin alphabet was substituted
with the letter that is found three positions afterward in the lexical order (i.e., “A”

24 Gaius Julius Caesar was a Roman emperor who lived from 102 BC to 44 BC.

DR
AF

T
VE

RS
IO

N

20 Cryptography 101: From Theory to Practice

is substituted with “D,” “B” is substituted with “E,” and so on). Today, this simple
additive cipher is known asCaesar cipher. Later on, people employed encryption
systems that used more advanced and involved mathematical transformations. Many
books on cryptography contain numerous examples of historically relevant encryp-
tion systems—they are not repeated in this book (unless a few remarks in Section
9.2); the encryption systems in use today are simply too different.

Until World War II, cryptography was considered to be an art (rather than
a science) and was primarily used in military and diplomacy. The following two
developments and scientific achievements turned cryptography from an art into a
science:

• During World War II, Claude E. Shannon25 developed a mathematical the-
ory of communication [34] and a related communication theory of secrecy
systems [35] when he was working at AT&T Laboratories.26 After their pub-
lication, the two theories started a new branch of research that is commonly
referred to asinformation theory(again, refer to Appendix C for a brief intro-
duction to information theory). It is used to prove the unconditional security
of cryptographic systems.

• As mentioned earlier, Diffie and Hellman developed and proposed the idea of
public key cryptography at Stanford University in the 1970s.27 Their vision
was to employ trapdoor functions to encrypt and digitally sign electronic
data and documents. As introduced in Section 2.1.3 and further addressed in
Chapter 5, a trapdoor function is a function that is easy to compute but hard to
invert—unless one knows and has access to some trapdoor information. This
information represents the private key held by a particular entity.

Diffie and Hellman’s work culminated in a key agreement protocol (i.e., the
Diffie-Hellman key exchange protocol described in Section 12.3) that allows two
parties that share no secret to exchange a few messages over a public channel and
to establish a shared (secret) key. This key can, for example, then be used to encrypt
and decrypt data. After Diffie and Hellman published their discovery, a number of

25 Claude E. Shannon was a mathematician who lived from 1916 to 2001.
26 Similar studies were done by Norbert Wiener, who lived from 1894 to 1964.
27 Similar ideas were pursued by Ralph C. Merkle at the University of California at Berkeley [36].

More than a decade ago, the British government revealed that public key cryptography, including
the Diffie-Hellman key agreement protocol and the RSA public key cryptosystem, was invented
at the Government Communications Headquarters (GCHQ) in Cheltenham in the early 1970s by
James H. Ellis, Clifford Cocks, and Malcolm J. Williamson under the namenonsecret encryption
(NSE). You may refer to the note “The Story of Non-Secret Encryption” written by Ellis in 1997 to
get the story (use a search engine to find the note in an Internet archive). Being part of the world of
secret services and intelligence agencies, Ellis, Cocks, and Williamson were not allowed to openly
talk about their discovery.

DR
AF

T
VE

RS
IO

N

Introduction 21

public key cryptosystems were developed and proposed. Some of these systems are
still in use, such as RSA [37] and Elgamal [38]. Other systems, such as the ones
based on the knapsack problem,28 have been broken and are no longer in use. Some
practically important public key cryptosystems are overviewed and discussed in Part
III of this book.

Since the early 1990s, we have seen a wide deployment and massive commer-
cialization of cryptography. Today, many companies develop, market, and sell cryp-
tographic techniques, mechanisms, services, and products (implemented in hardware
or software) on a global scale. There are cryptography-related conferences and trade
shows29 one can attend to learn more about products that implement cryptographic
techniques, mechanisms, and services. One must be cautious here, because the term
crypto is sometimes also used in a more narrow sense that is limited to blockchain-
based distributed ledger technologies (DLTs). This is especially true since the rise
of Bitcoin, idxrEthereum, and a few other cryptocurrencies.

The major goal of this book is to provide a basic understanding of what is
actually going on in the field. If you want to learn more about the practical use
of cryptography to secure Internet and Web applications, you may also refer to
[39–42] or any other book about Internet and Web security in general, and Internet
security protocols in particular. These practical applications of cryptography are not
addressed (or repeated) in this book.

In Section D.5, we briefly introduce the notion of a quantum computer. As
of this writing, the issue of whether it is ever possible to build and operate a
sufficiently large and stable quantum computer is still open and controversially
discussed in the community. But if such a computer can be built, then we know
that many cryptosystems in use today can be broken efficiently. This applies to
almost all public key cryptosystems (because these systems are typically based on
the integer factorization problem or discrete logarithm problem that can both be
solved on a quantum computer in polynomial time), and it partly applies to secret
key cryptosystems (because it is known how to reduce the steps required to perform
an exhaustive key search for ann-bit cipher from2n to 2n/2).

Against this background, people have started to look for cryptographic prim-
itives that remain secure even if sufficiently large and stable quantum computers
can be built and operated. The resulting area of research is known aspost-quantum

28 Theknapsack problemis a well-known problem in computational complexity theory and applied
mathematics. Given a set of items, each with a cost and a value, determine the number of each item
to include in a collection so that the total cost is less than some given cost and the total value is
as large as possible. The name derives from the scenario of choosing treasures to stuff into your
knapsack when you can only carry so much weight.

29 The most important trade show is the RSA Conference that is held annually. Refer to
https://www.rsaconference.com for more information.

DR
AF

T
VE

RS
IO

N

22 Cryptography 101: From Theory to Practice

cryptography(PQC).30 The goal is to design, implement, and deploy quantum-safe
cryptosystems. Ify refers to the time it takes to come up with such cryptosystems,x

the time information needs to be secure, andz the time it takes to build a practically
relevant, i.e., sufficiently large and stable, quantum computer, thenMosca’s Theo-
rem31 states that one should worry ifx + y > z. This is not mathematically precise,
but it still gives some hints about when to worry about quantum computers and PQC.

In the past couple of years, PQC has attracted a lot of interest and funding, and
many researchers have come up with proposals for PQC. In the case of secret key
cryptography, resistance against quantum computers can be provided by doubling
the key length. This is simple and straightforward. In the case of public key
cryptography, however, things are more involved and new design paradigms are
needed here. This is where code-based, hash-based, lattice-based, isogeny-based,
and multivariate-based cryptosystems may come into play. As further addressed in
Section 18.3, there is a NIST competition going on to evaluate and standardize post-
quantum public key cryptographic algorithms to be used in the field. This is in fact
a hot topic in contemporary cryptographic research.

1.4 OUTLINE OF THE BOOK

The rest of this book is organized as follows:

• In Chapter 2, “Cryptographic Systems Overview,” we introduce, briefly
overview, and put into perspective the three classes of cryptographic systems
(i.e., unkeyed cryptosystems, secret key cryptosystems, and public key cryp-
tosystems) with their major representatives.

• In Chapter 3, “Random Generators,” we begin Part I on unkeyed cryptosys-
tems by elaborating on how to generate random values or bits.

• In Chapter 4, “Random Functions,” we introduce the notion of a random func-
tion that plays a pivotal role in contemporary cryptography. Many cryptosys-
tems used in the field can, at least in principle, be seen as a random function.

• In Chapter 5, “One-Way Functions,” we focus on functions that are one-way.
Such functions are heavily used in public key cryptography.

• In Chapter 6, “Cryptographic Hash Functions,” we conclude Part I by outlin-
ing cryptographic hash functions and their use in contemporary cryptography.

30 A somehow better term would bequantum-resistant cryptography, but PQC has prevailed.
31 The theorem was originally proposed by Michele Mosca (https://faculty.iqc.uwaterloo.ca/mmosca/).

DR
AF

T
VE

RS
IO

N

Introduction 23

• In Chapter 7, “Pseudorandom Generators,” we begin Part II on secret key
cryptosystems by elaborating on how to use a pseudorandom generator seeded
with a secret key to generate pseudorandom values (instead of truly random
ones).

• In Chapter 8, “Pseudorandom Functions,” we do something similar for ran-
dom functions: We explain how to construct pseudorandom functions that use
a secret key as input and generate an output that looks as if it were generated
by a random function.

• In Chapter 9, “Symmetric Encryption,” we overview and discuss the symmet-
ric encryption systems that are most frequently used in the field.

• In Chapter 10, “Message Authentication,” we address message authentication
and explain how secret key cryptography can be used to generate and verify
message authentication codes.

• In Chapter 11, “Authenticated Encryption,” we conclude Part II by combining
symmetric encryption and message authentication in authenticated encryp-
tion. In many regards, AE represents the state of the art of cryptography as it
stands today.

• In Chapter 12, “Key Establishment,” we begin Part III on public key cryp-
tosystems by elaborating on the practically relevant problem of how to estab-
lish a secret key that is shared between two or more entities.

• In Chapter 13, “Asymmetric Encryption,” we overview and discuss the asym-
metric encryption systems that are most frequently used in the field.

• In Chapter 14, “Digital Signatures,” we elaborate on digital signatures and
respective digital signature systems (DSSs).

• In Chapter 15, “Zero-Knowledge Proofs of Knowledge,” we explore the
notion of an interactive proof system that may have the zero-knowledge
property, and discuss its application in zero-knowledge proofs of knowledge
for entity authentication.

• In Chapter 16, “Key Management,” we begin Part IV by discussing some
aspects related to key management that represents the Achilles’ heel of applied
cryptography.

• In Chapter 17, “Summary,” we conclude with some remarks about the current
state of the art in cryptography.

DR
AF

T
VE

RS
IO

N

24 Cryptography 101: From Theory to Practice

• In Chapter 18, “Outlook,” we predict possible and likely future developments
and trends in the field, including PQC.

This book includes several appendixes. Appendixes A to D summarize the
mathematical foundations and principles, including discrete mathematics (Appendix
A), probability theory (Appendix B), information theory (Appendix C), and com-
plexity theory (Appendix D). Finally, a list of mathematical symbols and a list of
abbreviations and acronyms are provided at the end of the book.

Note that cryptography is a field of study that is far too broad to be addressed
in a single book, and that one has to refer to additional and more in-depth material,
such as the literature referenced at the end of each chapter, to learn more about a
particular topic. Another possibility to learn more is to experiment and play around
with cryptographic systems. As mentioned in the Preface, there are several software
packages that can be used for this purpose, among which CrypTool is a particularly
good choice.

The aims of this book are threefold: (1) to provide an overview, (2) to give
an introduction into each of the previously mentioned topics and areas of research
and development, and (3) to put everything into perspective. Instead of trying to be
comprehensive and complete, this book tries to ensure that you still see the forest for
the trees. In the next chapter, we delve more deeply into the various representatives
of the three classes of cryptosystems introduced above.

References

[1] Shirey, R.,Internet Security Glossary, Version 2, RFC 4949 (FYI 36), August 2007.

[2] Menezes, A., P. van Oorschot, and S. Vanstone,Handbook of Applied Cryptography. CRC Press,
Boca Raton, FL, 1996.

[3] Stamp, M., and R.M. Low,Applied Cryptanalysis: Breaking Ciphers in the Real World. John
Wiley & Sons, New York, 2007.

[4] Swenson, C.,Modern Cryptanalysis: Techniques for Advanced Code Breaking. Wiley Publishing,
Indianapolis, IN, 2008.

[5] Joux, A.,Algorithmic Cryptanalysis. Chapman & Hall/CRC, Boca Raton, FL, 2009.

[6] Cole, E.,Hiding in Plain Sight: Steganography and the Art of Covert Communication. Wiley
Publishing, Indianapolis, IN, 2003.

[7] Wayner, P.,Disappearing Cryptography: Information Hiding — Steganography and Watermark-
ing, 3rd edition. Morgan Kaufmann Publishers, Burlington, MA, 2009.

[8] Arnold, M., M. Schmucker, and S.D. Wolthusen,Techniques and Applications of Digital Water-
marking and Content Protection. Artech House Publishers, Norwood, MA, 2003.

DR
AF

T
VE

RS
IO

N

Introduction 25

[9] Katzenbeisser, S., and F. Petitcolas,Information Hiding. Artech House Publishers, Norwood, MA,
2015.

[10] Kelsey, J., B. Schneier, and D. Wagner, “Protocol Interactions and the Chosen Protocol Attack,”
Proceedings of the 5th International Workshop on Security Protocols, Springer-Verlag, 1997, pp.
91–104.

[11] Oppliger, R., “Disillusioning Alice and Bob,”IEEE Security & Privacy, Vol. 15, No. 5, Septem-
ber/October 2017, pp. 82–84.

[12] Diffie, W., and M.E. Hellman, “New Directions in Cryptography,”IEEE Transactions on Infor-
mation Theory, IT-22(6), 1976, pp. 644–654.

[13] Maurer, U.M., “Towards the Equivalence of Breaking the Diffie-Hellman Protocol and Comput-
ing Discrete Logarithms,”Proceedings of CRYPTO ’94, Springer-Verlag, LNCS 839, 1994, pp.
271–281.

[14] Rabin, M.O., “Digitalized Signatures and Public-Key Functions as Intractable as Factorization,”
MIT Laboratory for Computer Science, MIT/LCS/TR-212, 1979.

[15] Bellare, M., and P. Rogaway, “Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols,”Proceedings of the 1st ACM Conference on Computer and Communications Security,
1993, pp. 62-73.

[16] Anderson, R., “Why Cryptosystems Fail,”Communications of the ACM, Vol. 37, No. 11, Novem-
ber 1994, pp. 32–40.

[17] Halderman, J.A., et al., “Lest We Remember: Cold Boot Attacks on Encryption Keys,”Commu-
nications of the ACM, Vol. 52, No. 5, May 2009, pp. 91–98.

[18] Anderson, R., and M. Kuhn, “Tamper Resistance—A Cautionary Note,”Proceedings of the 2nd
USENIX Workshop on Electronic Commerce, November 1996, pp. 1–11.

[19] Anderson, R., and M. Kuhn, “Low Cost Attacks on Tamper Resistant Devices,”Proceedings of
the 5th International Workshop on Security Protocols, Springer-Verlag, LNCS 1361, 1997, pp.
125–136.

[20] Kocher, P., “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems,”Proceedings of CRYPTO ’96, Springer-Verlag, LNCS 1109, 1996, pp. 104–113.

[21] Brumley, D., and D. Boneh, “Remote timing attacks are practical,”Proceedings of the 12th Usenix
Security Symposium, USENIX Association, 2003.

[22] Kocher, P., J. Jaffe, and B. Jun, “Differential Power Analysis,”Proceedings of CRYPTO ’99,
Springer-Verlag, LNCS 1666, 1999, pp. 388–397.

[23] Boneh, D., R. DeMillo, and R. Lipton, “On the Importance of Checking Cryptographic Protocols
for Faults,”Proceedings of EUROCRYPT ’97, Springer-Verlag, LNCS 1233, 1997, pp. 37–51.

[24] Biham, E., and A. Shamir, “Differential Fault Analysis of Secret Key Cryptosystems,”Proceed-
ings of CRYPTO ’97, Springer-Verlag, LNCS 1294, 1997, pp. 513–525.

[25] Bleichenbacher, D., “Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption
Standard PKCS #1,”Proceedings of CRYPTO ’98, Springer-Verlag, LNCS 1462, 1998, pp. 1–12.

DR
AF

T
VE

RS
IO

N

26 Cryptography 101: From Theory to Practice

[26] Asonov, D., and R. Agrawal, “Keyboard Acoustic Emanations,”Proceedings of IEEE Symposium
on Security and Privacy, 2004, pp. 3–11.

[27] Zhuang, L., Zhou, F., and J.D. Tygar, “Keyboard Acoustic Emanations Revisited,”Proceedings
of ACM Conference on Computer and Communications Security, November 2005, pp. 373–382.

[28] Micali, S., and L. Reyzin, “Physically Observable Cryptography,”Proceedings of Theory of
Cryptography Conference (TCC 2004), Springer-Verlag, LNCS 2951, 2004, pp. 278–296.

[29] Renauld, M., et al., “A Formal Study of Power Variability Issues and Side-Channel Attacks for
Nanoscale Devices,”Proceedings of EUROCRYPT 2011, Springer-Verlag, LNCS 6632, 2011, pp.
109–128.

[30] Kerckhoffs, A., “La Cryptographie Militaire,”Journal des Sciences Militaires, Vol. IX, January
1883, pp. 5–38, February 1883, pp. 161-191.

[31] Kahn, D.,The Codebreakers: The Comprehensive History of Secret Communication from Ancient
Times to the Internet. Scribner, New York, 1996.

[32] Bauer, F.L.,Decrypted Secrets: Methods and Maxims of Cryptology, 2nd edition. Springer-Verlag,
New York, 2000.

[33] Levy, S.,Crypto: How the Code Rebels Beat the Government—Saving Privacy in the Digital Age.
Viking Penguin, New York, 2001.

[34] Shannon, C.E., “A Mathematical Theory of Communication,”Bell System Technical Journal, Vol.
27, No. 3/4, July/October 1948, pp. 379–423/623–656.

[35] Shannon, C.E., “Communication Theory of Secrecy Systems,”Bell System Technical Journal,
Vol. 28, No. 4, October 1949, pp. 656–715.

[36] Merkle, R.C., “Secure Communication over Insecure Channels,”Communications of the ACM,
Vol. 21, No. 4, April 1978, pp. 294–299.

[37] Rivest, R.L., A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems,”Communications of the ACM, Vol. 21, No. 2, February 1978, pp. 120–126.

[38] Elgamal, T., “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithm,”
IEEE Transactions on Information Theory, Vol. 31, No. 4, 1985, pp. 469–472.

[39] Oppliger, R.,Internet and Intranet Security, 2nd edition. Artech House Publishers, Norwood,
MA, 2002.

[40] Oppliger, R.,Security Technologies for the World Wide Web, 2nd edition. Artech House Publish-
ers, Norwood, MA, 2003.

[42] Oppliger, R.,End-to-End Encrypted Messaging. Artech House Publishers, Norwood, MA, 2020.

[41] Oppliger, R.,SSL and TLS: Theory and Practice, 3rd edition. Artech House Publishers, Norwood,
MA, 2023.DR

AF
T

VE
RS

IO
N

Chapter 2

Cryptographic Systems Overview

As mentioned in Section 1.2.1, there are three classes of cryptographic systems:
unkeyed cryptosystems, secret key cryptosystems, and public key cryptosystems.
In this chapter, we introduce, overview, and provide some preliminary definitions
for the most important representatives of these classes in Sections 2.1–2.3, and we
conclude with some final remarks in Section 2.4. All cryptosystems mentioned in
this chapter will be revisited and more thoroughly addressed in later chapters of the
book.

2.1 UNKEYED CRYPTOSYSTEMS

According to Definition 1.5, unkeyed cryptosystems use no secret parameters.
The most important representatives of this class are random generators, random
functions, one-way functions, and cryptographic hash functions. We address them
in this particular order.

2.1.1 Random Generators

Randomness is the most important ingredient for cryptography, and most crypto-
graphic systems in use today depend on some form of randomness. This is certainly
true for key generation and probabilistic encryption, but it is also true for many
other cryptographic algorithms and systems. In Section 9.3, we will see that a per-
fectly secret encryption system (i.e., the one-time pad), requires a random bit for the
encryption of every single plaintext message bit. This means that the one-time pad
(in order to provide perfect secrecy) requires huge quantities of random bits. But
also in many other cases do we need ways to generate sequences of random values

27

DR
AF

T
VE

RS
IO

N

28 Cryptography 101: From Theory to Practice

or bits. This is where the notions of arandom generatoror a random bit generator
as captured in Definition 2.1 come into play.

Definition 2.1 (Random generator) A random generatoris a device or entity that
outputs a sequence of statistically independent and unbiased values. If the output
values are bits, then the random generator is also called arandom bit generator.

A random bit generator is depicted in Figure 2.1 as a gray box. It is important
to note that such a generator has no input, and that it only generates an output. Also,
because the output is a sequence of statistically independent and unbiased bits, all
bits must occur with the same probability; that is, Pr[0] = Pr[1] = 1/2, or—more
generally—all2k different k-tuples of bits must occur with the same probability
1/2k for all integersk ≥ 1. Luckily, there are statistical tests that can be used to
verify these properties. Passing these tests is a necessary but usually not sufficient
prerequisite for the output of a random generator to be suitable for cryptographic
purposes and applications.

Figure 2.1 A random bit generator.

Ideally, a random (bit) generator is a physical device, but it may also be
a logical entity that behaves like a physical device. In either case, it cannot be
implemented in a deterministic way. Instead, it must be inherently nondeterministic,
meaning that an implementation must use some physical events or phenomena
(for which the outcomes are impossible to predict). Alternatively speaking, every
(true) random generator requires a naturally occurring source of randomness. The
engineering task of finding such a source and exploiting it in a device that may serve
as a generator of binary sequences that are free of biases and correlations is a very
challenging one. As mentioned above, the output of such a generator must fulfill
statistical tests, but it must also withstand various types of sophisticated attacks.

Random generators and their design principles and security properties are
further addressed in Chapter 3.

DR
AF

T
VE

RS
IO

N

Cryptographic Systems Overview 29

2.1.2 Random Functions

As mentioned above, a random generator is to output some random-looking values.
In contrast, arandom function(that is sometimes also called arandom oracle) is not
characterized by its output, but rather by the way it is chosen. This idea is captured
in Definition 2.2.

Definition 2.2 (Random function) A random functionis a functionf ∶ X → Y that
is chosen randomly fromFuncs[X,Y], i.e., the set of all functions that map elements
of the domainX to elements of the codomainY .

For input valuex ∈ X , a random function can output any valuey = f(x) ∈
f(X) ⊆ Y . The only requirement is that the same inputx always maps to the same
outputy. Except for that, everything is possible and does not really matter (for the
function to be random).

Figure 2.2 Elements ofFuncs[{a, b},{1,2,3}].

Note that there are∣Y ∣∣X ∣ functions in Funcs[X,Y], and this number is
incredibly large—even for moderately sizedX andY . If, for example,X = {a, b}
andY = {1,2,3}, thenFuncs[X,Y] comprises32 = 9 functions, and this number is
sufficiently small that its elements can be illustrated in Figure 2.2. If we moderately

DR
AF

T
VE

RS
IO

N

30 Cryptography 101: From Theory to Practice

increase the sets and letX be the set of all 2-bit strings andY the set of all 3-bit
strings, then∣X ∣ = 22 and ∣Y ∣ = 23, and henceFuncs[X,Y] already comprises(23)22 = (23)4 = 212 = 4,096 functions. What this basically means is that there are
4,096 possible functions to map 2-bit strings to 3-bit strings. This can no longer be
illustrated on a paper sheet. Let us consider an even more realistic setting, in which
X andY are both 128 bits long. Here,Funcs[X,Y] comprises

(2128)2128 = 2128⋅2128 = 227⋅2128 = 22135
functions, and this number is so large that it would require2135 bits, if one wanted
to number the functions and use an index to refer to a particular function from
Funcs[X,Y]. This is clearly impractical.

Also note that random functions are not meant to be implemented in the field.
Instead, they represent conceptual constructs that are mainly used in security proofs.
Referring to the security game of Figure 1.2 in Section 1.2.2.1, the random function
yields the ideal system and it is shown that no adversary can tell the real system (for
which the security needs to be proven) apart from it. If this can in fact be shown,
then the real system behaves like a random function, and this, in turn, means that
the adversary must try out all possibilities. Since there are so many possibilities, this
task can be assumed to be computationally infeasible, and hence one can conclude
that the real system is secure for all practical purposes.

If X = Y andFuncs[X,X] is restricted to the set of all possible permutations
of X (i.e.,Perms[X]), then we can say that arandom permutationis a randomly
chosen permutation fromPerms[X]. Everything said above about random functions
is also true for random permutations. We revisit the notions of random functions and
random permutations, as well as the way they are used in cryptography in Chapter
4.

2.1.3 One-Way Functions

Informally speaking, a functionf ∶ X → Y is one way if it is easy to compute
but hard to invert. Referring to complexity theory,easymeans that the computation
can be done efficiently (i.e., in polynomial time), whereashard means that it is not
known how to do the computation efficiently, that is, no efficient algorithm is known
to exist.1 More formally, the notion of aone-way functionis captured in Definition
2.3 and illustrated in Figure 2.3.

Definition 2.3 (One-way function) A functionf ∶ X → Y is one wayif f(x) can
be computed efficiently for allx ∈X , butf−1(f(x)) cannot be computed efficiently,
meaning thatf−1(y) cannot be computed efficiently fory ∈R Y .

1 Note that it is not impossible that such an algorithm exists; it is just not known.

DR
AF

T
VE

RS
IO

N

Cryptographic Systems Overview 31

Figure 2.3 A one-way function.

In this definition,X represents the domain off , Y represents the range,
and the expressiony ∈R Y reads as “an elementy that is randomly chosen from
Y .” Consequently, it must be possible to efficiently computef(x) for all x ∈ X ,
whereas it must not—or only with a negligible probability—be possible to compute
f−1(y) for a y that is randomly chosen fromY . To be more precise, one must
state that it may be possible to computef−1(y), but that the entity that wants to
do the computation does not know how to do it. In either case, Definition 2.3 is
not precise in a mathematically strong sense, because we have not yet defined what
an efficient computation is. In essence, a computation is said to be efficient if the
(expected) running time of the algorithm that does the computation is bounded by a
polynomial in the length of the input. Otherwise (i.e., if the expected running time
is not bounded by a polynomial in the length of the input), the algorithm requires
super-polynomial time and is said to be inefficient. For example, an algorithm that
requires exponential time is clearly superpolynomial. This notion of efficiency (and
the distinction between polynomial and superpolynomial running time algorithms)
is yet coarse, but still the best we have to work with.

There are many real-world examples of one-way functions. If, for example,
we have a telephone book, then the function that assigns a telephone number to each
name is easy to compute (because the names are sorted alphabetically) but hard
to invert (because the telephone numbers are not sorted numerically). Also, many
physical processes are inherently one way. If, for example, we smash a bottle into
pieces, then it is generally infeasible to put the pieces together and reassemble the

DR
AF

T
VE

RS
IO

N

32 Cryptography 101: From Theory to Practice

bottle. Similarly, if we drop a bottle from a bridge, then it falls down, whereas the
reverse process never occurs by itself. Last but not least, time is inherently one way,
and it is (currently) not known how to travel back in time. As a consequence of this
fact, we continuously age and have no possibility to make ourselves young again.

In contrast to the real world, there are only a few mathematical functions
conjectured to be one way. The most important examples are centered around
modular exponentiation: Either f(x) = gx (mod m), f(x) = xe (mod m), or
f(x) = x2 (mod m) for a properly chosen modulusm. While the argumentx is in
the exponent in the first function,x represents the base of the exponentiation function
in the other two functions. Inverting the first function requires computing discrete
logarithms, whereas inverting the second (third) function requires computing e-th
(square) roots. The three functions are used in many public key cryptosystems: The
first function is, for example, used in the Diffie-Hellman key exchange protocol
(Section 12.3), the second function is used in the RSA public key cryptosystem
(Section 13.3.1), and the third function is used in the Rabin encryption system
(Section 13.3.2). We will discuss all of these systems later in the book. It is, however,
important to note that none of these functions has been shown to be one way in a
mathematically strong sense, and that it is theoretically not even known whether one-
way functions exist at all. This means that the one-way property of these functions
is just an assumption that may turn out to be wrong (or illusory) some day in the
future—we don’t think so, but it may still be the case.

In the general case, a one-way function cannot be inverted efficiently. But
there may still be some one-way functions that can be inverted efficiently, if and—
as it is hoped—only if some extra information is known. This brings in the notion of
a trapdoor (one-way) functionas captured in Definition 2.4.

Definition 2.4 (Trapdoor function) A one-way functionf ∶ X → Y is a trapdoor
function(or a trapdoor one-way function, respectively), if there is some extra infor-
mation (i.e., thetrapdoor) with whichf can be inverted efficiently, i.e.,f−1(f(x))
can be computed efficiently for allx ∈ X or f−1(y) can be computed efficiently for
y ∈R Y .

Among the functions mentioned above,f(x) = xe (mod m) and f(x) =
x2 (mod m) have a trapdoor, namely the prime factorization ofm. Somebody who
knows the prime factors ofm can also efficiently invert these functions. In contrast,
the functionf(x) = gx (mod m) is not known to have a trapdoor ifm is a prime
number.

The mechanical analog of a trapdoor (one-way) function is a padlock. It can
be closed by everybody (if it is in unlocked state), but it can be opened only by
somebody who holds the proper key. In this analogy, a padlock without a keyhole
represents a one-way function. In the real world, this is not a particularly useful

DR
AF

T
VE

RS
IO

N

Cryptographic Systems Overview 33

artifact, but in the digital world, as we will see, there are many applications that
make use of it.

If X andY are the same, then a one-way functionf ∶ X → X that is a
permutation (i.e.,f ∈ Perms[X]), is called aone-way permutation. Similar to
Definition 2.4, a one-way permutationf ∶ X → X is a trapdoor permutation(or a
trapdoor one-way permutation, respectively), if it has a trapdoor. Consequently, one-
way permutations and trapdoor permutations are special cases of one-way functions
and trapdoor functions, namely ones in which the domain and the range are the same
and the functions themselves are permutations.

One-way functions including trapdoor functions, one-way permutations, and
trapdoor permutations are further addressed in Chapter 5. In this chapter, we will
also explain why one has to consider families of such functions to be mathematically
correct. In Part III of the book, we then elaborate on the use one-way and trapdoor
functions in public key cryptography.

2.1.4 Cryptographic Hash Functions

Hash functions are widely used and have many applications in computer science.
Informally speaking, a hash function is an efficiently computable function that takes
an arbitrarily large input and generates an output of a usually much smaller size.
This idea is captured in Definition 2.5 and illustrated in Figure 2.4.

Definition 2.5 (Hash function) A functionh ∶ X → Y is a hash function, if h(x)
can be computed efficiently for allx ∈X and ∣X ∣≫ ∣Y ∣.

Figure 2.4 A hash function.

DR
AF

T
VE

RS
IO

N

34 Cryptography 101: From Theory to Practice

The elements ofX andY are typically strings of characters from a given
alphabet. IfΣin is the input alphabet andΣout is the output alphabet, then a hash
functionh can be written ash ∶ Σ∗in → Σn

out, or h ∶ Σnmax

in → Σn
out if the input

size is restricted tonmax for some technical reasons.2 In either case, the output isn
characters long. In many practical settings,Σin andΣout are identical and refer to
the binary alphabetΣ = {0,1}. In such a setting, the hash functionh takes as input
an arbitrarily long bitstring and generates as output a bitstring of fixed sizen.

In cryptography, we are talking about strings that are a few hundred bits long.
Also, we are talking about hash functions that have specific (security) properties,
such as one-wayness (or preimage resistance, respectively), second-preimage re-
sistance, and/or collision resistance. These properties are introduced and fully ex-
plained in Chapter 6. In the meantime, it suffices to know that a hash function used
in cryptography (i.e., a cryptographic hash function), must fulfill two basic require-
ments:

• On the one hand, it must be hard to invert the function; that is, the function is
one-way or preimage resistant.3

• On the other hand, it must be hard to find a collision, meaning that it is either
hard to find a second preimage for a given hash value; that is, the function is
second-preimage resistant, or it is hard to find two preimages that hash to the
same value (i.e., the function is collision resistant).

According to Definition 2.6, the first requirement can be combined with any of the
two possibilities from the second requirement.

Definition 2.6 (Cryptographic hash function) A hash functionh is cryptographic,
if it is either one-way and second-preimage resistant or one-way and collision
resistant.

Cryptographic hash functions have many applications in cryptography. Most
importantly, a cryptographic hash functionh can be used to hash arbitrarily sized
messages to bitstrings of fixed size. This is illustrated in Figure 2.5, where the
ASCII-encoded message “This is a file that includes some important but long
statements. Consequently, we may need a short representation of this file.” is hashed
to 0x492165102a1a9e3179a2139d429e32ce4f7fd837 (in hexadecimal
notation). This value represents thefingerprint or digestof the message and—in
some sense—stands for it. The second-preimage resistance property implies that it is
difficult—or even computationally infeasible—to find another message that hashes
to the same value. It also implies that a minor modification of the message leads to

2 One such reason may be that the input length must be encoded in a fixed-length field in the padding.
3 The two terms are used synonymously here.

DR
AF

T
VE

RS
IO

N

Cryptographic Systems Overview 35

a completely different hash value that looks random. If, for example, a second point
were added to the message given above, then the resulting hash value would be
0x2049a3fe86abcb824d9f9bc957f00cfa7c1cae16 (that is completely
independent from0x492165102a1a9e3179a2139d429e32ce4f7fd837).
If the collision resistance property is required, then it is even computationally
infeasible to find two arbitrary messages that hash to the same value.4

Figure 2.5 A cryptographic hash function.

Examples of cryptographic hash functions that are used in the field are MD5,
SHA-1 (depicted in Figure 2.5), the representatives from the SHA-2 family, and
SHA-3 or KECCAK. These functions generate hash values of different sizes.5

Cryptographic hash functions, their design principles, and their security prop-
erties are further addressed in Chapter 6.

Random generators, random functions, one-way functions, and cryptographic
hash functions are unkeyed cryptosystems that are omnipresent in cryptography, and
that are used as building blocks in more sophisticated cryptographic systems and ap-
plications. The next class of cryptosystems we look at are secret key cryptosystems.
Referring to Definition 1.6, these cryptosystems use secret parameters that are shared
among all participating entities.

2.2 SECRET KEY CRYPTOSYSTEMS

The most important representatives of secret key cryptosystems are pseudorandom
generators, pseudorandom functions, systems for symmetric encryption and mes-
sage authentication, as well as authenticated encryption. For all of these systems we

4 Because the task of finding two arbitrary messages that hash to the same value is simpler than finding
a message that hashes to a given value, collision resistance is a stronger property than second-
preimage resistance.

5 The output of MD5 is 128 bits long. The output of SHA-1 is 160 bits long. Many other hash
functions generate an output of variable size.

DR
AF

T
VE

RS
IO

N

36 Cryptography 101: From Theory to Practice

briefly explain what they are all about and what it means by saying that they are
secure. Note, however, that the notion of security will be explained in more detail in
the respective chapters in Part II of the book.

2.2.1 Pseudorandom Generators

In Section 2.1.1, we introduced the notion of a random generator that can be used
to generate random values. If a large number of such values is needed, then it may
be more appropriate to use apseudorandom generator(PRG) instead of—or rather
in combination with—a true random generator. More specifically, one can use a
random generator to randomly generate a short value (i.e., a seed), and a PRG to
stretch this short value into a much longer sequence of values that appear to be
random. The notions of a PRG and apseudorandom bit generator(PRBG) are
captured in Definition 2.7.

Definition 2.7 (PRG and PRBG) A PRGis an efficiently computable function that
takes as input a relatively short value of lengthn, called theseed, and generates
as output a value of lengthl(n) with l(n) ≫ n that appears to be random (and is
therefore calledpseudorandom). If the input and output values are bit sequences,
then the PRG is a PRBG.

Figure 2.6 A PRBG.

A PRBG is illustrated in Figure 2.6.6 Formally speaking, a PRBGG is a
mapping fromK = {0,1}n to {0,1}l(n), wherel(n) represents a stretch function
(i.e., a function that stretches ann-bit input value into a longerl(n)-bit output value
with n < l(n) ≤ ∞):

G ∶ K Ð→ {0,1}l(n)
Note that Definition 2.7 is not precise in a mathematically strong sense, be-

cause we have not yet defined what we mean by saying that a bit sequence “appears

6 Note the subtle difference between Figures 2.1 and 2.6. Both generators output bit sequences. But
while the random bit generator has no input, the PRBG has a seed that represents the input.

DR
AF

T
VE

RS
IO

N

Cryptographic Systems Overview 37

to be random.” Unlike a true random generator, a PRG operates deterministically,
and this, in turn, means that a PRG always outputs the same values if seeded with
the same input value. A PRG thus represents afinite state machine(FSM), and hence
the sequence of the generated values needs to be cyclic (with a potentially very large
cycle). This is why we cannot require that the output of a PRG is truly random, but
only that it appears to be so (for a computationally bounded adversary).

This is the starting point for a security definition: We say that a PRG is secure,
if its output is indistinguishable from the output of a true random generator. Again
referring to the security game of Section 1.2.2.1, we consider an adversary who can
have a generator output arbitrarily many values, and his or her task is to decide
whether these values are generated by a true random generator or a PRG (i.e.,
whether they are randomly or pseudorandomly generated). If he or she can do so
(with a probability that is better than guessing), then the PRG does not appear to
behave like a random generator and is therefore not assumed to be secure. Needless
to say that the adversary can employ all statistical tests mentioned in Section 2.1.1
and further explored in Section 3.3 to make his or her decision.

We will explore PRGs and (cryptographically) secure PRGs in more detail in
Chapter 7. As suggested by the title of [1], pseudorandomness and PRGs are key
ingredients and have many applications in cryptography, such as key generation and
additive stream ciphers.

2.2.2 Pseudorandom Functions

We have just seen how to use a PRG to “simulate” a true random generator (and this
is why we call the respective generatorpseudorandominstead ofrandom). Follow-
ing a similar line of argumentation, we may try to “simulate” a random function as
introduced in Section 2.1.2 with apseudorandom function(PRF). Remember that a
random functionf ∶ X → Y is randomly chosen fromFuncs[X,Y], and that the
size of this set; that is∣Funcs[X,Y]∣ = ∣Y ∣∣X ∣, is so incredibly large that we cannot
number its elements and use an index to refer to a particular function. Instead, we can
better use a subset ofFuncs[X,Y] that is sufficiently small so that we can number
its elements and use a moderately sized index to refer to a particular function from
the subset. If we use a secret key as an index into the subset, then we can have
something like a random function without its disadvantages. This is the plan, and a
respective definition for a PRF is given in Definition 2.8.7

7 The notion of a function family (or family of functions, respectively) is formally introduced in
Section A.1.1. Here, it is sufficient to have an intuitive understanding for the term.

DR
AF

T
VE

RS
IO

N

38 Cryptography 101: From Theory to Practice

Definition 2.8 (PRF) A PRFis a familyF ∶ K ×X → Y of (efficiently computable)
functions, where eachk ∈ K determines a functionfk ∶ X → Y that is indistinguish-
able from a random function; that is, a function randomly chosen fromFuncs[X,Y].

Note that there are “only”∣K∣ elements inF , whereas there are∣Y ∣∣X ∣ elements
in Funcs[X,Y]. This means that we can use a relatively small key to determine a
particular functionfk ∈ F , and this function still behaves like a random function,
meaning that it is computationally indistinguishable from a truly random function.
In our security game this means that, when interacting8 with either a random
function or a PRF, an adversary cannot tell the two cases apart. In other words,
he or she cannot or can only tell with a negligible probability whether he or she is
interacting with a random function or “only” a pseudorandom one. Such a PRF (that
is indistinguishable from a random function) then behaves like a random function
and is considered to be “secure,” meaning that it can be used for cryptographic
purposes and applications.

A pseudorandom permutation(PRP) is defined similarly: A PRP is a family
P ∶ K × X → X of (efficiently computable) permutations, where eachk ∈ K
determines a permutationpk ∶ X → X that is indistinguishable from a random
permutation; that is, a permutation randomly chosen fromPerms[X].

PRFs and PRPs are important in modern cryptography mainly because many
cryptographic constructions that are relevant in practice can be seen this way: A
cryptographic hash function is a PRF (with no key); a key derivation function (KDF)
is a PRF with a seed acting as key; a block cipher is a PRP; a PRG can be built from
a PRF and vice versa, and so on. PRFs and PRPs and their security properties will
be further addressed in Chapter 8.

2.2.3 Symmetric Encryption

When people talk about cryptography, they often refer to confidentiality protection
using asymmetric encryption systemthat, in turn, can be used to encrypt and
decrypt data.Encryptionrefers to the process that maps a plaintext message to a
ciphertext, whereasdecryptionrefers to the reverse process (i.e., the process that
maps a ciphertext back to the plaintext message). Formally speaking, a symmetric
encryption system (orcipher) can be defined as suggested in Definition 2.9.

Definition 2.9 (Symmetric encryption system)Let M be a plaintext message
space,9 C a ciphertext space, andK a key space. Asymmetric encryption system
or cipherrefers to a pair(E,D) of families of efficiently computable functions:

8 Interacting means that the adversary can have arbitrarily many input values of his or her choice be
mapped to respective output values.

9 In some other literature, the plaintext message space is denoted byP .

DR
AF

T
VE

RS
IO

N

Cryptographic Systems Overview 39

• E ∶ K ×M → C denotes a family{Ek ∶ k ∈ K} of encryption functions
Ek ∶M→ C;

• D ∶ K × C → M denotes a family{Dk ∶ k ∈ K} of respectivedecryption
functionsDk ∶ C →M.

For every messagem ∈M and keyk ∈ K, the functionsDk andEk must be inverse
to each other; that is,Dk(Ek(m)) =m.10

In a typical setting,M = C = {0,1}∗ refers to the set of all arbitrarily long binary
strings, whereasK = {0,1}l refers to the set of alll bits long keys. Hence,l stands
for the key length of the symmetric encryption system (e.g.,l = 128).

While the decryption functions need to be deterministic, the encryption func-
tions can be deterministic or probabilistic. In the second case, they usually take some
random data as additional input (this is not formalized in Definition 2.9). As will
become clear later in the book, probabilistic encryption functions tend to be more
secure than deterministic ones.

In the description of a (symmetric or asymmetric) encryption system, we often
use an algorithmic notation:Generate then stands for a key generation algorithm
(that can be omitted in the symmetric case because the key is just randomly
selected fromK), Encrypt for an algorithm that implements the encryption function,
andDecrypt for an algorithm that implements the decryption function. Using this
notation, the working principle of a symmetric encryption system is illustrated in
Figure 2.7. First, theGenerate algorithm generates a keyk by randomly selecting
an element fromK. This key is distributed to either side of the communication
channel (this is why the encryption system is called “symmetric” in the first place),
namely to the sender (or the sending device, respectively) on the left side and the
recipient (or the receiving device, respectively) on the right side. The sender can
encrypt a plaintext messagem ∈ M with its implementation of the encryption
function orEncrypt algorithm andk. The resulting ciphertextc = Ek(m) ∈ C is
sent to the recipient over the communication channel that can be insecure (drawn as
a dotted line in Figure 2.7). On the right side, the recipient can decryptc with its
implementation of the decryption function orDecrypt algorithm and the same key
k. If the decryption is successful, then the recipient is able to retrieve and continue
to use the original messagem.

The characteristic feature of a symmetric encryption system is in fact that
k is the same on either side of the communication channel, meaning thatk is a
secret shared by the sender and the recipient. Another characteristic feature is that
the system can operate on individual bits and bytes (typically representing astream

10 In some symmetric encryption systems, it does not matter whether one encrypts first and then
decrypts or one decrypts first and then encrypts: that is,Dk(Ek(m)) = Ek(Dk(m)) =m.

DR
AF

T
VE

RS
IO

N

40 Cryptography 101: From Theory to Practice

Figure 2.7 The working principle of a symmetric encryption system.

cipher) or on larger blocks (typically representing ablock cipher). While there are
modes of operation that turn a block cipher into a stream cipher, the opposite is not
known to be true, meaning that there is no mode of operation that effectively turns a
stream cipher into a block cipher.

To make meaningful statements about the security of a symmetric encryption
system or cipher, one must define the adversary and the task he or she needs to solve
to be successful (Definition 1.8). With regard to the adversary, one must specify
his or her computing power and the types of attacks he or she is able to mount,
such as ciphertext-only attacks, chosen-plaintext attacks, or even chosen-ciphertext
attacks. With regard to the task, one must specify whether he or she must decrypt a
ciphertext, determine a key, determine a few bits from either the plaintext or the key,
or do something else. Consequently, there are several notions of security one may
come up with. If, for example, an adversary has infinite computing power but is still
not able to decrypt a ciphertext within a finite amount of time, then the respective
cipher is unconditionally or information-theoretically secure. We already mentioned
that the one-time pad yields an example of such an information-theoretically secure
cipher (that provides perfect secrecy). If the adversary is theoretically able to decrypt
a ciphertext within a finite amount of time, but the computing power required to do
so is beyond his or her capabilities, then the respective cipher is “only” conditionally
or computationally secure. This means that the system can be broken in theory

DR
AF

T
VE

RS
IO

N

Cryptographic Systems Overview 41

(e.g., by an exhaustive key search), but the respective attacks are assumed to be
computationally infeasible to mount by the adversaries one has in mind.

In Chapter 9, we will introduce, formalize, discuss, and put into perspective
several notions of security, including semantic security. If a cipher is semantically
secure, then it is computationally infeasible to retrieve any meaningful information
about a plaintext message from a given ciphertext, even if the adversary can mount a
chosen-plaintext attack, and hence has access to an encryption oracle. All symmetric
encryption systems in use today are at least semantically secure. In this chapter,
we will also outline ciphers that are either historically relevant, such as the Data
Encryption Standard (DES) and RC4, or practically important, such as the Advanced
Encryption Standard (AES) and Salsa20/ChaCha20. Note that there are many other
ciphers proposed in the literature. The majority of them have been broken, but some
still remain secure.

2.2.4 Message Authentication

While encryption systems are to protect the confidentiality of data, there are appli-
cations that require rather the authenticity and integrity of data to be protected—
either in addition or instead of the confidentiality. Consider, for example, a financial
transaction. It is nice to have the confidentiality of this transaction be protected, but
it is somehow more important to protect its authenticity and integrity. The typical
way to achieve this is to have the sender add anauthentication tagto the message
and to have the recipient verify the tag before he or she accepts the message as being
genuine. This is conceptually similar to an error correction code. But in addition to
protect a message against transmission errors, an authentication tag also protects a
message against tampering and deliberate fraud. This means that the tag itself needs
to be protected against an adversary who may try to modify the message and/or the
tag.

From a bird’s eye perspective, there are two possibilities to construct an au-
thentication tag: Either through the use of public key cryptography and adigital sig-
nature(as explained later in this book) or through the use of secret key cryptography
and amessage authentication code(MAC11). The second possibility is captured in
Definition 2.10.

Definition 2.10 (MAC) A MAC is an authentication tag that can be computed and
verified with a secret parameter (e.g., a secret key).

In the case of a message sent from one sender to one recipient, the secret
parameter must be shared between the two entities. If, however, the message is sent

11 In some literature, the termmessage integrity code(MIC) is used synonymously and interchange-
ably. However, this term is not used in this book.

DR
AF

T
VE

RS
IO

N

42 Cryptography 101: From Theory to Practice

to multiple recipients, then the secret parameter must be shared among the sender
and all receiving entities. In this case, the distribution and management of the secret
parameter yields a major challenge (and is probably one of the Achilles’ heels of the
entire system).

Similar to a symmetric encryption system, one can introduce and formally
define a system to compute and verify MACs. In this book, we sometimes use the
termmessage authentication systemto refer to such a system (contrary to many other
terms used in this book, this term is not widely used in the literature). It is formalized
in Definition 2.11.

Definition 2.11 (Message authentication system)LetM be a message space,T a
tag space, andK a key space. Amessage authentication systemthen refers to a pair(A,V) of families of efficiently computable functions:

• A ∶ K ×M → T denotes a family{Ak ∶ k ∈ K} of authentication functions
Ak ∶M→ T ;

• V ∶ K ×M × T → {valid, invalid} denotes a family{Vk ∶ k ∈ K} of
verification functionsVk ∶M × T → {valid, invalid}.

For every messagem ∈ M and keyk ∈ K, Vk(m, t) must yieldvalid if and only
if t is a valid authentication tag form and k; that is, t = Ak(m), and hence
Vk(m,Ak(m)) must yieldvalid.

Typically,M = {0,1}∗, T = {0,1}ltag for some fixed tag lengthltag, andK ={0,1}lkey for some fixed key lengthlkey . It is often the case thatltag = lkey = 128,
meaning that the tags and keys are 128 bits long each.

The working principle of a message authentication system is depicted in
Figure 2.8. Again, theGenerate algorithm randomly selects a keyk from K that
is sent to the sender (on the left side) and the recipient (on the right side). The
sender uses the authentication function orAuthenticate algorithm to compute an
authentication tagt from m andk. Both m and t are sent to the recipient. The
recipient, in turn, uses the verification function orVerify algorithm to check whether
t is a valid tag with respect tom andk. The resulting Boolean value yields the output
of theVerify algorithm; it can either bevalid or invalid.

To argue about the security of a message authentication system, we must
define the adversary and the task he or she must solve to be successful (i.e., to
break the security of the system). Similar to symmetric encryption systems, we may
consider adversaries with infinite computing power to come up with systems that
are unconditionally or information-theoretically secure, or—more realistically—
adversaries with finite computing power to come up with systems that are “only”
conditionally or computationally secure.

DR
AF

T
VE

RS
IO

N

Cryptographic Systems Overview 43

Figure 2.8 The working principle of a message authentication system.

As we will see in Chapter 10, there are message authentication systems that
are unconditionally or information-theoretically secure, but require a unique key to
authenticate a single message, and there are systems that are “only” conditionally or
computationally secure, but can use a single and relatively short key to authenticate
multiple messages. Needless to say, this is more appropriate and useful, and hence
most systems used in the field are conditionally or computationally secure. Further-
more, the notion of (computational) security we are heading for is unforgeability,
meaning that it must be computationally infeasible to generate a valid tag for a new
message. This requirement will be clarified and more precisely defined in Chapter
10, when we elaborate on message authentication, MACs, and respective message
authentication systems.

2.2.5 Authenticated Encryption

For a long time, people used symmetric encryption systems to encrypt messages
and message authentication systems to generate MACs that were then appended to
the messages. But it was not clear how (i.e., in what order), the two cryptographic
primitives had to be applied and combined to achieve the best level of security. In
general, there are three approaches or generic composition methods. Letm ∈M be
a message,ke an encryption key, andka an authentication key from respective key
spaces. The generic composition methods can then be described as follows:

DR
AF

T
VE

RS
IO

N

44 Cryptography 101: From Theory to Practice

• In Encrypt-then-MAC(EtM) the messagem is first encrypted, and the result-
ing ciphertext is then authenticated, before the ciphertext and the MAC are
sent together to the recipient. Mathematically speaking, the data that is sent
to the recipient isEke

(m) ∥ Aka
(Eke

(m)). EtM is used, for example, in IP
security (IPsec).

• In Encrypt-and-MAC(E&M) the messagem is encrypted and authenticated
independently, meaning that—in contrast to EtM—a MAC is generated for
the plaintext and sent together with the ciphertext to the recipient. In this case,
the data that is sent to the recipient isEke

(m) ∥ Aka
(m). E&M is used, for

example, in Secure Shell (SSH).

• In MAC-then-Encrypt(MtE) a MAC is first generated for the plaintext mes-
sage, and the message with the appended MAC is then encrypted. The re-
sulting ciphertext (that comprises both the message and the MAC) is then
sent to the recipient. In this case, the data that is sent to the recipient is
Eke
(m ∥ Aka

(m)). MtA was used, for example, in former versions of the
SSL/TLS protocols [2].

Since 2001 it is known that encrypting a message and subsequently applying a
MAC to the ciphertext (i.e., the EtM method), provides the best level of security [3],
and most of today’s security protocols follow this approach, i.e., they apply message
encryption prior to authentication. More specifically, most people combine message
encryption and authentication in what is calledauthenticated encryption(AE) or
authenticated encryption with associated data(AEAD). AEAD basically refers to
AE where all data are authenticated but not all data are encrypted. The exemplary use
case is an IP packet, where the payload is encrypted and authenticated but the header
is only authenticated (because it must be accessible to the intermediate routers in the
clear). AE is further addressed in Chapter 11. Most importantly, there are several
modes of operation for block ciphers that provide AE (or AEAD, respectively).

The next class of cryptosystems we look at are public key cryptosystems.
According to Definition 1.7, these are cryptosystems that use secret parameters that
are not shared among all participating entities, meaning that they are held in private.

2.3 PUBLIC KEY CRYPTOSYSTEMS

Instead of sharing all secret parameters, the entities that participate in a public key
cryptosystem hold two distinct sets of parameters: One that is private (collectively
referred to as theprivate or secret keyand abbreviated assk), and one that is

DR
AF

T
VE

RS
IO

N

Cryptographic Systems Overview 45

published (collectively referred to as thepublic keyand abbreviated aspk).12 A
necessary but usually not sufficient prerequisite for a public key cryptosystem to be
secure is that both keys—the private key and the public key—are yet mathematically
related, but it is still computationally infeasible to compute one from the other.
Another prerequisite is that the public keys are available in a form that provides
authenticity and integrity. If somebody is able to introduce faked public keys, then
he or she is usually able to mount very powerful attacks. This is why we usually
require public keys to be published in some certified form, and hence the notions of
(public key) certificates and public key infrastructures (PKI) come into play. This
topic will be further addressed in Section 16.4.

The fact that public key cryptosystems use secret parameters that are not
shared among all participating entities suggests that the respective algorithms are
executed by different entities, and hence that such cryptosystems are best defined as
sets of algorithms (that are then executed by these different entities). We adopt this
viewpoint in this book and define public key cryptosystems as sets of algorithms. In
the case of an asymmetric encryption system, for example, there is a key generation
algorithmGenerate, an encryption algorithmEncrypt, and a decryption algorithm
Decrypt. TheGenerate andEncrypt algorithms are usually executed by the sender
of a message, whereas theDecrypt algorithm is executed by the recipient(s). As
discussed later, other public key cryptosystems may employ other sets of algorithms.

In the following sections, we briefly overview the most important public key
cryptosystems used in the field, such as key establishment, asymmetric encryption,
and digital signatures. The overview is superficial here, and the technical details
are provided in Part II of the book (this also applies to zero-knowledge proofs of
knowledge that are not addressed here).

Because public key cryptography is computationally less efficient than secret
key cryptography, it usually makes a lot of sense to combine both types of cryptog-
raphy inhybrid cryptosystems. In such a system, public key cryptography is mainly
used for authentication and key establishment, whereas secret key cryptography is
used for everything else (most notably bulk data encryption). Hybrid cryptosystems
are frequently used and very widely deployed in the field. In fact, almost every non-
trivial application of cryptography employs some form of hybrid cryptography.

2.3.1 Key Establishment

If two or more entities want to employ and make use of secret key cryptography,
then they must share a secret parameter that represents a cryptographic key. Con-
sequently, in a large system many secret keys must be generated, stored, managed,

12 It depends on the cryptosystem whether it matters which set of parameters is used to represent the
private key and which set of parameters is used to represent the public key.

DR
AF

T
VE

RS
IO

N

46 Cryptography 101: From Theory to Practice

used, and destroyed (at the end of their life cycle) in a secure way. If, for example,
n entities want to securely communicate with each other, then there are

(n
2
) = n(n − 1)

1 ⋅ 2
=
n2 − n

2

such keys. This number grows in the order ofn2, and hence the establishment of
secret keys is a major practical problem—sometimes called then2-problem—and
probably the Achilles’ heel of the large-scale deployment of secret key cryptography.
For example, ifn = 1,000 entities want to securely communicate with each other,
then there are

(1,000

2
) = 1,0002 − 1,000

2
= 499,500

keys. Even for moderately largen, the generation, storage, management, usage, and
destruction of all such keys is prohibitively expensive and the antecedent distribution
of them is next to impossible. Things even get worse in dynamic systems, where
entities may join and leave at will. In such a system, the distribution of keys is
impossible, because it is not even known in advance who may want to join. This
means that one has to establish keys when needed, and there are basically two
approaches to achieve this:

• The use of akey distribution center(KDC) that provides the entities with the
keys needed to securely communicate with each other;

• The use of akey establishment protocolthat allows the entities to establish the
keys themselves.

A prominent example of a KDC is the Kerberos authentication and key dis-
tribution system [4]. KDCs in general and Kerberos in particular have many disad-
vantages. The most important disadvantage is that each entity must unconditionally
trust the KDC and share a master key with it. There are situations in which this
level of trust is neither justified nor can it be accepted by the participating enti-
ties. Consequently, the use of a key establishment protocol that employs public key
cryptography yields a viable alternative that is advantageous in most situations and
application settings.

In a simple key establishment protocol, an entity randomly generates a key and
uses a secure channel to transmit it to the peer entity (or peer entities, respectively).
The secure channel can be implemented with any asymmetric encryption system:
The entity that randomly generates the key encrypts the key with the public key of
the peer entity. This protocol is simple and straightforward, but it has the problem

DR
AF

T
VE

RS
IO

N

Cryptographic Systems Overview 47

that the security depends on the quality and security of the key generation process—
which yields a PRG. Consequently, it is advantageous to have a mechanism in place
that allows two (or even more) entities to establish and agree on a commonly shared
key. This is where the notion of a key agreement or key exchange protocol comes
into play (as opposed to a key distribution protocol).

Even today, the most important key exchange protocol was proposed by
Diffie and Hellman in their landmark paper [5] that opened the field of public key
cryptography. It solves a problem that looks impossible to solve: How can two
entities that have no prior relationship and do not share any secret use a public
channel to agree on a shared secret? Imagine a room in which people can only shout
messages at each other. How can two persons in this room agree on a secret? As we
will see in Chapter 12, theDiffie-Hellman key exchange protocolsolves this problem
in a simple and ingenious way. In this chapter, we will also discuss a few variants
and their security, and say a few words about the use of quantum cryptography as an
alternative way of exchanging keying material.

2.3.2 Asymmetric Encryption Systems

Similar to a symmetric encryption system, an asymmetric encryption system can
be used to encrypt and decrypt plaintext messages. The major difference between a
symmetric and an asymmetric encryption system is that the former employs secret
key cryptography and respective techniques, whereas the latter employs public key
cryptography and respective techniques.

As already emphasized in Section 2.1.3, an asymmetric encryption system can
be built from a trapdoor function—or, more specifically—from a family of trapdoor
functions. Each public key pair comprises a public keypk that yields a one-way
function and a private keysk that yields a trapdoor (needed to efficiently compute
the inverse of the one-way function). To send a secret message to the recipient, the
sender uses the recipient’s public key and applies the respective one-way function
to the plaintext message. The resulting ciphertext is then sent to the recipient. The
recipient, in turn, is the only entity that supposedly holds the trapdoor (information)
needed to invert the one-way function and to decrypt the ciphertext accordingly.
More formally, an asymmetric encryption system can be defined as in Definition
2.12.

Definition 2.12 (Asymmetric encryption system)An asymmetric encryption sys-
temconsists of the following three efficient algorithms:

DR
AF

T
VE

RS
IO

N

48 Cryptography 101: From Theory to Practice

• Generate(1k) is a probabilistic key generation algorithm that takes as input a
security parameter1k (in unary notation13), and generates as output a public
key pair(pk, sk) that is in line with the security parameter.

• Encrypt(pk,m) is a deterministic or probabilistic encryption algorithm that
takes as input a public keypk and a plaintext messagem, and generates as
output a ciphertextc = Encrypt(pk,m).

• Decrypt(sk, c) is a deterministic decryption algorithm that takes as input a
private keysk and a ciphertextc, and generates as output a plaintext message
m = Decrypt(sk, c).
For every plaintext messagem and public key pair(pk, sk), theEncrypt and

Decrypt algorithms must be inverse to each other; that is,Decrypt(sk,Encrypt(pk,
m)) =m.

Figure 2.9 The working principle of an asymmetric encryption system.

13 This means that a 1 is repeatedk times.

DR
AF

T
VE

RS
IO

N

Cryptographic Systems Overview 49

The working principle of an asymmetric encryption system is illustrated in
Figure 2.9. At the top of the figure, theGenerate algorithm is to generate a public key
pair for entity A that is the recipient of a message. In preparation for the encryption,
A’s public keypkA is provided to the sender on the left side. The sender then subjects
the messagem to the one-way function represented bypkA, and sends the respective
ciphertextc = EncryptpkA

(m) to A. On the right side, A knows its secret keyskA
that represents a trapdoor to the one-way function and can be used to decryptc and
retrieve the plaintext messagem = DecryptskA

(c) accordingly. Hence, the output of
theDecrypt algorithm is the original messagem.

There are many asymmetric encryption systems that have been proposed in the
literature, such as Elgamal, RSA, and Rabin. These systems are based on the three
exemplary one-way functions mentioned in Section 2.1.3 (in this order). Because
it is computationally infeasible to invert these functions, the systems provide a
reasonable level of security—even in their basic forms (that are sometimes called
textbook versions).

In Chapter 13, we will elaborate on these asymmetric encryption systems,
but we will also address notions of security that cannot be achieved with them.
The strongest notion of security is again defined in the game-theoretical setting:
An adversary can select two equally long plaintext messages and has one of them
encrypted. If he or she cannot tell whether the respective ciphertext is the encryp-
tion of the first or the second plaintext message with a probability that is better
than guessing, then the asymmetric encryption system leaks no information and is
therefore assumed to be (semantically) secure. This may hold even if the adversary
has access to a decryption oracle, meaning that he or she can have any ciphertext
of his or her choice be decrypted—except, of course, the ciphertext the adversary is
challenged with. We will more thoroughly explain this setting and present variants
of the basic asymmetric encryption systems that remain secure even in this setting.

2.3.3 Digital Signatures

Digital signatures can be used to protect the authenticity and integrity of messages,
or—more generally—data objects. According to [6], adigital signaturerefers to
“a value computed with a cryptographic algorithm and appended to a data object
in such a way that any recipient of the data can use the signature to verify the
data’s origin and integrity.” Similarly, the term digital signature is defined as “data
appended to, or a cryptographic transformation of, a data unit that allows a recipient
of the data unit to prove the source and integrity of the data unit and protect
against forgery, e.g. by the recipient” in ISO/IEC 7498-2 [7]. Following the second
definition, there are two classes of digital signatures:

DR
AF

T
VE

RS
IO

N

50 Cryptography 101: From Theory to Practice

• If data representing the digital signature is appended to a data unit (or mes-
sage), then one refers to adigital signature with appendix.

• If a data unit is cryptographically transformed in a way that it represents both
the data unit (or message) that is signed and the digital signature, then one
refers to adigital signature giving message recovery. In this case, the data
unit is recovered if and only if the signature is successfully verified.

In either case, the entity that digitally signs a data unit or message is called the
signeror signatory, whereas the entity that verifies the digital signature is called the
verifier. In a typical setting, both the signer and the verifier are computing devices
operating on a user’s behalf. The formal definitions of the two respective digital
signature systems (DSS) are given in Definitions 2.13 and 2.14.

Definition 2.13 (DSS with appendix)A DSS with appendixconsists of the follow-
ing three efficiently computable algorithms:

• Generate(1k) is a probabilistic key generation algorithm that takes as input
a security parameter1k, and generates as output a public key pair(pk, sk)
that is in line with the security parameter.

• Sign(sk,m) is a deterministic or probabilistic signature generation algorithm
that takes as input a signing keysk and a messagem, and generates as output
a digital signatures for m.

• Verify(pk,m, s) is a deterministic signature verification algorithm that takes
as input a verification keypk, a messagem, and a purported digital signature
s for m, and generates as output a binary decision whether the signature is
valid.

Verify(pk,m, s)must yieldvalid if and only ifs is a valid digital signature for
m andpk. This means that for every messagem and every public key pair(pk, sk),
Verify(pk,m,Sign(sk,m)) must yieldvalid.

Definition 2.14 (DSS giving message recovery)A DSS giving message recovery
consists of the following three efficiently computable algorithms:

• Generate(1k) is a probabilistic key generation algorithm that takes as input
a security parameter1k, and generates as output a public key pair(pk, sk)
that is in line with the security parameter.

• Sign(sk,m) is a deterministic or probabilistic signature generation algorithm
that takes as input a signing keysk and a messagem, and generates as output
a digital signatures giving message recovery.

DR
AF

T
VE

RS
IO

N

Cryptographic Systems Overview 51

• Recover(pk, s) is a deterministic message recovery algorithm that takes as
input a verification keypk and a digital signatures, and generates as output
either the message that is digitally signed or a notification indicating that the
digital signature is invalid.

Recover(pk, s)must yieldm if and only ifs is a valid digital signature form
andpk. This means that for every messagem and every public key pair(pk, sk),
Recover(pk,Sign(sk,m))must yieldm.

Note that theGenerate andSign algorithms are identical in this algorithmic
notation, and that the only difference refers to theVerify andRecover algorithms.
While theVerify algorithm takes the messagem as input, this value is not needed
by theRecover algorithm. Instead, the messagem is automatically recovered if the
signature turns out to be valid.

Figure 2.10 The working principle of a DSS with appendix.

The working principle of a DSS with appendix is illustrated in Figure 2.10.
This time, theGenerate algorithm is applied on the left side (i.e., the signer’ side).
The signer uses the secret keyskA (representing the trapdoor) to sign messagem;
that is,s = Sign(skA,m). This messagem and the respective signatures are then

DR
AF

T
VE

RS
IO

N

52 Cryptography 101: From Theory to Practice

sent to the verifier. This verifier, in turn, uses theVerify algorithm to verifys. More
specifically, it takesm,s, andpkA as input values and ouputs eithervalid or invalid
(obviously depending on the validity of the signature).

Figure 2.11 The working principle of a DSS giving message recovery.

If the DSS is giving message recovery, then the situation is slightly different.
As illustrated in Figure 2.11, the beginning is the same. But instead of sendingm

ands to the recipient, the signatory only sendss. The signature encodes the message.
So when the recipient subjectss to theRecover algorithm, the output is eitherm (if
the signature is valid) orinvalid.

With the proliferation of the Internet in general and Internet-based electronic
commerce in particular, digital signatures and the legislation thereof have become
important and timely topics. In fact, many DSS with specific and unique properties
have been developed, proposed, and published in the literature. Again, the most
important DSSs are overviewed, discussed, and put into perspective in Chapter 14.
These are RSA, Rabin, Elgamal, and some variations thereof, such as the Digital
Signature Algorithm (DSA) and its elliptic curve version (ECDSA).

Similar to asymmetric encryption systems, the security discussion for digital
signatures is nontrivial and subtle, and there are several notions of security discussed
in the literature. The general theme is that it must be computationally infeasible for

DR
AF

T
VE

RS
IO

N

Cryptographic Systems Overview 53

an adversary to generate a new valid-looking signature, even if he or she has access
to an oracle that provides him or her with arbitrarily many signatures for messages
of his or her choice. In technical parlance, this means that the DSS must resist
existential forgery, even if the adversary can mount an adaptive chosen-message
attack. Again, we will revisit this topic and explain the various notions of security
for DSSs, as well as some constructions to achieve these levels of security in Chapter
14.

2.4 FINAL REMARKS

In this chapter, we briefly introduced and provided some preliminary definitions for
the most important representatives of the three main classes of cryptosystems distin-
guished in this book, namely unkeyed cryptosystems, secret key cryptosystems, and
public key cryptosystems. We want to note (again) that this classification scheme is
somewhat arbitrary, and that other classification schemes may be possible as well.

The cryptosystems that are preliminarily defined in this chapter are revisited,
more precisely defined (in a mathematically strong sense), discussed, and put into
perspective in the remaining chapters of the book. For all of these systems, we also
dive more deeply into the question of what it means for such a system to be secure.
This leads us to various notions of security that can be found in the literature. Some
of these notions are equivalent, whereas others are fundamentally different. In this
case, it is interesting to know the exact relationship of the notions, and what notion
is actually the strongest one. We then also provide cryptosystems that conform to
this (strongest) notion of security.

Following this line of argumentation, it is a major theme in cryptography to
better understand and formally define notions of security, and to prove that particular
cryptosystems are secure in this sense. It is another theme to start with cryptographic
building blocks that are known to be secure, and to ask how these building blocks
can be composed or combined in more advanced cryptographic protocols or systems
so that their security properties still apply. Alternatively speaking, how can secure
cryptographic building blocks be composed or combined in a modular fashion
so that the result remains secure? This is an interesting and practically relevant
question addressed in cryptographic research areas and frameworks likeuniversal
composability[8] or constructive cryptography[9]. These topics are beyond the
scope of this book and not further addressed here. Instead, we “only” provide an
overview of the cryptographic building blocks that are available and that are assumed
to be secure when considered in isolation. Just keep in mind that a cryptosystem that
is secure in isolation does not need to remain secure when combined or composed
with others. So, research areas and frameworks like universal composability and

DR
AF

T
VE

RS
IO

N

54 Cryptography 101: From Theory to Practice

constructive cryptography are crucial for the overall security of a cryptographic
application.

References

[1] Luby, M., Pseudorandomness and Cryptographic Applications. Princeton Computer Science
Notes, Princeton, NJ, 1996.

[2] Oppliger, R.,SSL and TLS: Theory and Practice, 2nd edition. Artech House Publishers, Norwood,
MA, 2016.

[3] Krawczyk, H., “The Order of Encryption and Authentication for Protecting Communications (or:
How Secure Is SSL?),”Proceedings of CRYPTO 2001, Springer-Verlag, LNCS 2139, 2001, pp.
310–331.

[4] Oppliger, R.,Authentication Systems for Secure Networks. Artech House Publishers, Norwood,
MA, 1996.

[5] Diffie, W., and M.E. Hellman, “New Directions in Cryptography,”IEEE Transactions on Infor-
mation Theory, Vol. 22, No. 6, 1976, pp. 644–654.

[6] Shirey, R.,Internet Security Glossary, Version 2, Informational RFC 4949 (FYI 36), August 2007.

[7] ISO/IEC 7498-2,Information Processing Systems—Open Systems Interconnection Reference
Model—Part 2: Security Architecture, 1989.

[8] Canetti, R., “Universally Composable Security: A New Paradigm for Cryptographic Protocols,”
Cryptology ePrint Archive,Report 2000/067, 2000, https://eprint.iacr.org/2000/067.

[9] Maurer, U.M., “Constructive Cryptography – A New Paradigm for Security Definitions and
Proofs,” Proceedings of the 2011 International Conference on Theory of Security and Appli-
cations (TOSCA 2011), Springer-Verlag, LNCS 6993, 2012, pp. 33–56.

DR
AF

T
VE

RS
IO

N

