
This Text is extracted from a draft 
version of the 3rd edition of Rolf 
Oppliger's upcoming book on "SSL 
and TLS: Theory and Practice" 
that is going to be published by 
Artech House (tentatively 
scheduled for 2022).

The second edition is available 
(ISBN 978-1-60807-8).



158 SSL and TLS: Theory and Practice

3.8.1 Renegotiation Attacks

In 2009, Marsh Ray and Steve Dispensa published a paper52 in which they describe
a vulnerability (CVE-2009-3555) that can be exploited to mount a MITM attack
against an optional but usually recommended feature of the TLS protocol, namely to
be able to renegotiate a session. The reasons that may make itnecessary to rene-
gotiate a session are discussed in Section 2.2.2. It may be the case that crypto-
graphic keys need to be refreshed, cryptographic parameters need to be changed,
or—most importantly—certificate-based client authentication needs to be invoked.
More specifically, if a client needs to authenticate using a certificate but wants to
hide its identity, then it may first establish an unauthenticated session to the server
and then use this session to renegotiate another session that is authenticated with
a certificate. Since the renegotiation messages are transmitted within the first ses-
sion, the client certificate is encrypted during transmission and is not revealed to
an eavesdropper. But keep in mind that a session renegotiation is not the same as a
session resumption: While a new session with a new session IDis established in a
renegotiation, an already existing and previously established session is reused in a
resumption. Technically speaking, a client-initiated renegotiation can be started by
having the client send a new CLIENTHELLO message to the server, whereas a server-
initiated renegotiation can be started by having the serversend a HELLOREQUEST

message to the client. In either case, the party that receives the message can either
accept or refuse the renegotiation request. If it accepts the request, then a new hand-
shake is initiated. If, however, it refuses the request, then no handshake is initiated
and ano_renegotiation alert message (with code 100) is returned instead.

A renegotiation attack is essentially a plaintext injection attack, meaning that
the MITM tries to inject some additional data into an application data stream. If the
injected data is delivered together with the rest of the datastream to the application,
then some unexpected things can happen that may be exploitedin an attack.

Let us consider, for example, a web setting in which TLS—and hence
HTTPS—is used to secure an application. Such a setting and the outline of a renego-
tiation attack are overviewed in Figure 3.10. The adversaryrepresenting the MITM
is located between the client (left side) and the server (right side). The client wants to
establish a TLS session and sends a respective CLIENTHELLO message to the server.
This message is captured by the MITM. Before forwarding it (on the client’s behalf),
the MITM establishes a first TLS session to the server. This session is used to send

52 When the paper was published, Ray and Dispensa were working for PhoneFactor, a then leading
company in the realm of multifactor authentication. The publication appeared as a technical report
of this company. In 2012, PhoneFactor was acquired by Microsoft, and hence the technical reports
of PhoneFactor are no longer available on the Internet. However, there are still many Internet
repositories that distribute them. You may simply search for “Renegotiating TLS.”



TLS Protocol 159

Figure 3.10 The TLS renegotiation attack (overview).

an HTTP request message to the server (denoted HTTP message 1in Figure 3.10).
Let us assume that this request comprises the following two header lines (where only
the first line is terminated with a new line character):

GET /orderProduct?deliverTo=Address-1

X-Ignore-This:

The meaning of these header lines will soon become clear. Many SSL/TLS imple-
mentations don’t pass decrypted data immediately to the application. Instead they
wait for other data arrive and pass them collectively to the application. This behavior
is actually exploited in the attack.

Immediately after having sent this HTTP message to the server, the MITM
forwards the client’s original CLIENTHELLO message to the server, again using
session 1. From the server’s perspective, this message looks as if the client that
originates the message wanted to renegotiate the session. So a second TLS session
is established between the client and the server, and the useof TLS renegotiation
suggests that this second TLS session is tunneled through the first TLS session.
This also means that the handshake of the second TLS session is oblivious to the
MITM, and that the MITM can only send back and forth handshakemessages
(through TLS session 1). If the handshake succeeds, then a second TLS session
is established between the client and the server, and this session is now end-to-end
protected, meaning that the adversary cannot decrypt the transmitted data. Let us
assume that the server authenticates the client, and that the server issues a cookie as
a bearer token used for client authentication. Due to the end-to-end protection, the



160 SSL and TLS: Theory and Practice

adversary cannot access the cookie to misuse it directly. But see what happens if the
client uses the end-to-end protected TLS session 2 to send another HTTP request
message—labeled “HTTP request 2” in Figure 3.10—to the server. In this case, the
two messages may be concatenated and collectively passed tothe application. From
the application’s viewpoint, it is therefore no longer possible to distinguish the two
messages—they both appear to originate from the same source, i.e., the client. If, in
our example, HTTP request 2 started with the following two header lines

GET /orderProduct?deliverTo=Address-2

Cookie: 7892AB9854

then the two messages would be concatenated as follows:

GET /orderProduct?deliverTo=Address-1

X-Ignore-This: GET /orderProduct?deliverTo=Address-2

Cookie: 7892AB9854

TheX-Ignore-This: header is an invalid HTTP header and is therefore ignored
by most implementations. Since it is not terminated with a new line character, it is
concatenated with the first line of HTTP request 2. This basically means that the
entire line is going to be ignored and hence that the requested product is going to be
delivered toAddress-1 instead ofAddress-2. Note that the cookie is provided
by the client and is therefore valid, so there is no reason notto serve the request. The
problem is not the cookie, but the fact that some unauthenticated data is mixed with
authenticated data and passed together to the application.This leads to a situation,
in which the application falsely suggests that either data is authenticated. Also note
that there are many possibilities to exploit this vulnerability and to come up with
respective (renegotiation) attacks. Examples are given inthe original publication
and many related articles, as well as a recommended reading that was posted shortly
after the original publication.53

Renegotiation attacks are conceptually related to cross-site request forgery
(CSRF) attacks, so, in general, any protection mechanism put in place against CSRF
attacks also helps mitigating renegotiation attacks. Furthermore, because the renego-
tiation feature is optional (as mentioned above), a simple and straightforward possi-
bility to mitigate such attacks is to disable the feature andnot support renegotiation
in the first place. Less strictly speaking, it may be sufficient to only disable client-
initiated renegotiation (as a side effect, this also protects the server against some
DoS attacks). But since disabling renegotiation is not always possible, people have
come up with other protection mechanisms. Most importantly, the IETF TLS WG
has developed a mechanism that provides handshake recognition, meaning that it

53 http://www.securegoose.org/2009/11/tls-renegotiation-vulnerability-cve.html.



TLS Protocol 161

must be confirmed that when renegotiating both parties have the same view of the
previous handshake, i.e., the one that is being renegotiated. As introduced in Section
3.4.1.19, there is a distinct TLS extension, i.e., therenegotiation_info exten-
sion specified in [30], that serves this purpose. In essence,it binds the renegotiated
handshake to the previous one. In our example from Figure 3.10, handshake 2 has
no previous handshake, and if it had, then it would be different from handshake 1
and unknown to the adversary. This seems to mitigate the attack.

To invoke the secure renegotiation mechanism, the client and the server must
both include therenegotiation_info extension in their hello messages. In the
initial handshake, the extensions are empty, meaning that the extensions comprise
no data. The client and server only signal to each other that they support the exten-
sion. If, at some later point in time, the client wants to securely renegotiate, it adds
anotherrenegotiation_info extension to its CLIENTHELLO message. This
time, the extension comprises data, namely the client-sideverify_data field of
the FINISHED message that was sent in the handshake for the session it wants to
renegotiate. Remember from Section 3.2.4 that theverify_data field comprises
a hash value of all messages sent in a handshake before the FINISHED message. It
thus stands for a particular handshake and a particular session. If the server is will-
ing to securely renegotiate this session, then it sends backa SERVERHELLO mes-
sage with arenegotiation_info extension that comprises both the client-side
verify_data field of the client’s FINISHED message and theverify_data
field of the server’s FINISHED message—both from the previous handshake. Intu-
itively, by including one or twoverify_data fields from the previous handshake,
the parties ensure that they both have the same view of the previous handshake, and
hence that they actually renegotiate the same session.

There is an interoperability issue: Because some SSL 3.0, TLS 1.0, and some-
times even TLS 1.1 implementations have problems gracefully ignoring empty ex-
tensions at the end of hello messages, people have come up with another possi-
bility to let a client signal to a server that it supports secure renegotiation. Instead
of sending an emptyrenegotiation_info extension in the CLIENTHELLO

message, the client includes a special signaling cipher suite value (SCSV), i.e.,
TLS_EMPTY_RENEGOTIATION_INFO_SCSVwith byte code 0x00FF, in the list
of supported cipher suites [30]. This also tells the server that it is willing and able to
support secure renegotiation. The actual secure renegotiation then remains the same
(and hence the secure renegotiation extension still needs to be supported by either
party). The only point in usingTLS_EMPTY_RENEGOTIATION_INFO_SCSV is
to avoid any empty extension at the end of a hello message. This should make some
implementations more stable.

The goal of therenegotiation_info extension is to link the session that
is being renegotiated to the handshake of the previous session. This is to mitigate the



162 SSL and TLS: Theory and Practice

renegotiation attack and its variants. A client that is tricked into renegotiation does
not automatically provide theverify_data field from the previous handshake.
Also, if a MITM modified the CLIENTHELLO message to supply the required data,
then the respective message modification and integrity losswould be detected at the
TLS level.

Between 2010 and 2014, it was therefore believed that the renegotiation at-
tack was successfully mitigated. In 2014, however, it was shown that this was
not completely the case, and that in some situations a renegotiation attack re-
mains feasible, even if the secure renegotiation mechanismempowered by the
renegotiation_info extension is put in place [66]. The respective attack em-
ploys three handshakes and is therefore calledtriple handshake attack, or 3SHAKE
attack, in short. The attack is fairly sophisticated and we only briefly sketch it here.

In a triple handshake attack, the MITM is to cleverly exploitthe following two
weaknesses of the TLS handshake protocol:

• First, the MITM can establich two sessions—one between the client and the
MITM and the other between the MITM and the server—that sharethe same
master key and session ID. If, for example, RSA is used for keyexchange,
then the MITM can simply decrypt the premaster secret from the client and
reencrypt it with the public key of the server. The random values are left
unchanged, and the session ID from the server is relayed backto the client.
After the handshake, the master keys and session IDs of the two sessions are
the same. But while the client is tricked into thinking that it has established a
session to the server (where in fact it has a session with the MITM), the server
thinks that it is connected with an unauthenticated client and has no way of
detecting the existence of the MITM. Technically speaking,this type of attack
has been known as anunknown key-share attack [67].

• Second, if an unknown key-share attack is followed by a session resumption,
then the resulting two sessions do not only share the same master key and
ID, but they also share the sameverify_data fields in their respective
FINISHED messages. This is mainly due to the fact that certificates arenot
used (and hence do not appear) in a session resumption.

Combining these two weaknesses, the MITM can establish two sessions—one
to the client and another to the server—that use the sameverify_data field in
their FINISHED messages and hence also share the samerenegotiation_info

values. This, in turn, means that the renegotiation attack can be mounted again (as a
3SHAKE attack), and that therenegotiation_info extension does not really
solve the problem. Referring to its name, the 3SHAKE attack comprises three steps
or handshakes, respectively.



TLS Protocol 163

• In step 1, the MITM mounts an unknown key-share attack to establish two
sessions that share the same master key and session ID. As is usually the case
in a MITM attack, the first session is between the client and the MITM, and
the second session is between the MITM and the server.

• In step 2, the MITM waits until the client resumes its session. In contrast to a
renegotiation that requires theverify_data from the FINISHED message
of the previous handshake, only the session ID and the masterkey are required
to resume a session. The MITM can do this also for his or her session to
the server. In the end, there are two fully synchronized sessions that share
the sameverify_data field. After these preparatory steps, the MITM can
actually mount the renegotiation attack.

• In step 3, the MITM first sends HTTP request 1 to the server and then has the
server trigger a renegotiation that requires client-side authentication using,
for example, a certificate. The respective handshake takes place between the
client and the server. To mitigate “normal” renegotiation attacks, the client
adds therenegotiation_info extension to its CLIENTHELLO message.
The data of this extension refers to theverify_data field of the previous
session to the MITM. According to what we have said before, this is the same
value as theverify_data field of the previous session between the MITM
and the server. So it can be verified by the server, and the server thus believes
that the previous session to the MITM is the one that is being renegotiated.
When the now authenticated client then sends an HTTP request2 to the server,
both requests are concatenated and collectively passed to the application. This
means that the same attack becomes feasible, and hence that we are back
where we started.

The bottom line is that triple handshake attacks can still bemounted in spite
of the renegotiation_info extension. The underlying problem is that an
unknown key-share attack combined with a subsequent session resumption allows a
MITM to establish two fully synchronized sessions. This is true even if the sessions
are bound to different server certificates (the session fromthe client to the MITM
is bound to the MITM’s certificate, whereas the connection from the MITM to the
server is bound to the server certificate). One way to mitigate the unknown key-
share attack is to make the generation of the master key not only depend on the
premaster secret and random values selected by the client and the server, but also on
the server certificate. Even more generally, it is reasonable to make the master secret
depend on all handshake messages that have been exchanged previously. Because the
CERTIFICATE message comprises the server certificate, this ensures thatthe master



164 SSL and TLS: Theory and Practice

secret also depends on the server certificate, and hence that an unknown key-share
attack is infeasible to mount.

The extended_master_secret extension specified in RFC 7627 [28]
follows this line of argumentation (cf. Section 3.4.1.19). It ensures that the master
secret that is generated—let us call itextended master secret—is unique. In either
case, it ensures that different sessions established to different servers have different
extended master secrets. Remember from Section 3.1.1 that a master secret is
normally generated as

master_secret =

PRF(pre_master_secret,"master secret",

client_random + server_random)

If the extended_master_secret extension is negotiated, then the master
secret is generated in a slightly different way:

master_secret =

PRF(pre_master_secret,"extended master secret",

session_hash)

Note that this construction uses another label and that the client and server random
values are replaced with a session hash. This is a hash value computed over the
concatenation of all handshake messages (including their type and length fields)
sent or received, starting with the CLIENTHELLO message and up to and including
the CLIENTKEYEXCHANGE message. This includes, among other things, the client
and server random values and the server certificate. Since TLS 1.2, the hash function
is the same that is also used to compute the FINISHED message. For all previous
versions of the TLS protocol, the hash function employs the concatenation of MD5
and SHA-1. We have seen and discussed this before.

If a TLS session is established with both therenegotiation_info and
extended_master_secretextensions in place, then it is reasonable to assume
that the respective session is going to be secure against all types of renegotiation
attacks. At least nobody has found a possibility to mount yet another attack in this
setting.

3.8.2 Compression-Related Attacks

In the past few years, there have been several attacks against the TLS protocol that
exploit the combined use of compression and encryption. The respective vulnerabil-
ity was first observed and pointed out by John Kelsey in 2002 [69]. The problem
is that compression may reduce the size of a plaintext in a specific way and that
this reduction in size may reveal some information about the underlying plaintext

U80707530
Rechteck


	Leere Seite



