¢ SEGURITY

0103010203010

This Text is extracted from a draft 031U i 10 E T TR 16101010
version of the 3rd edition of Rolf
Oppliger's upcoming book on "SSL SSI_ and TLS
and TLS: Theory and Practice”
that is going to be published by Thﬁﬂ I’y Elﬂ[l

Artech House (tentatively .
scheduled for 2022). TINE Pr'a[:tme

BREACH Second Edition

.. . . FREAK
The second edition is available

(ISBN 978-1-60807-8).

ROLF OPPLIGER [l

LGGJ&“



158 SSL and TLS: Theory and Practice

3.8.1 Renegotiation Attacks

In 2009, Marsh Ray and Steve Dispensa published a paipewhich they describe
a vulnerability (CVE-2009-3555) that can be exploited toumiba MITM attack
against an optional but usually recommended feature of tf8pFotocol, namely to
be able to renegotiate a session. The reasons that may madéeessary to rene-
gotiate a session are discussed in Section 2.2.2. It mayeeabe that crypto-
graphic keys need to be refreshed, cryptographic parametsxd to be changed,
or—most importantly—certificate-based client autheriizaneeds to be invoked.
More specifically, if a client needs to authenticate usingedificate but wants to
hide its identity, then it may first establish an unauthextéd session to the server
and then use this session to renegotiate another sessiois tshenticated with
a certificate. Since the renegotiation messages are traadmiithin the first ses-
sion, the client certificate is encrypted during transmissand is not revealed to
an eavesdropper. But keep in mind that a session renegatiatnot the same as a
session resumption: While a new session with a new sessiag ébtablished in a
renegotiation, an already existing and previously esthbll session is reused in a
resumption. Technically speaking, a client-initiatedegaotiation can be started by
having the client send a new.&ENTHELLO message to the server, whereas a server-
initiated renegotiation can be started by having the sesgad a HLLOREQUEST
message to the client. In either case, the party that rec#iemessage can either
accept or refuse the renegotiation request. If it acceptsafuest, then a new hand-
shake is initiated. If, however, it refuses the requesh the handshake is initiated
and ano_renegotiation alert message (with code 100) is returned instead.

A renegotiation attack is essentially a plaintext injestaitack, meaning that
the MITM tries to inject some additional data into an apgimadata stream. If the
injected data is delivered together with the rest of the dam to the application,
then some unexpected things can happen that may be exgloaedttack.

Let us consider, for example, a web setting in which TLS—amacde
HTTPS—is used to secure an application. Such a setting araliine of a renego-
tiation attack are overviewed in Figure 3.10. The adversgpyesenting the MITM
is located between the client (left side) and the serveh{ggle). The client wants to
establish a TLS session and sends a respectiveNG HELLO message to the server.
This message is captured by the MITM. Before forwardingrittfte client’s behalf),
the MITM establishes a first TLS session to the server. Thdsisa is used to send

52 When the paper was published, Ray and Dispensa were \gadikirPhoneFactor, a then leading
company in the realm of multifactor authentication. Thelfmaltion appeared as a technical report
of this company. In 2012, PhoneFactor was acquired by Midtoand hence the technical reports
of PhoneFactor are no longer available on the Internet. Memvehere are still many Internet
repositories that distribute them. You may simply searctiRenegotiating TLS.”



TLSProtocol 159

Client MITM Server

ClientHello

HTTP request 1

ClientHello (copy)

TLS session 2

HTTP request 2

Figure3.10 The TLS renegotiation attack (overview).

an HTTP request message to the server (denoted HTTP mesgage&lre 3.10).
Let us assume that this request comprises the following eaalér lines (where only
the first line is terminated with a new line character):

GET /orderProduct?deliverTo=Address-1
X-Ignore-This:

The meaning of these header lines will soon become cleary!8&b/TLS imple-
mentations don't pass decrypted data immediately to thécapipn. Instead they
wait for other data arrive and pass them collectively to fhy@iaation. This behavior
is actually exploited in the attack.

Immediately after having sent this HTTP message to the gettve MITM
forwards the client’s original OENTHELLO message to the server, again using
session 1. From the server's perspective, this messags Eokf the client that
originates the message wanted to renegotiate the sessi@as&ond TLS session
is established between the client and the server, and thefuBeS renegotiation
suggests that this second TLS session is tunneled throwgfirgh TLS session.
This also means that the handshake of the second TLS sessidtiviious to the
MITM, and that the MITM can only send back and forth handshalessages
(through TLS session 1). If the handshake succeeds, thencm&d LS session
is established between the client and the server, and tbésoseis now end-to-end
protected, meaning that the adversary cannot decrypt émsrritted data. Let us
assume that the server authenticates the client, and ehagetkier issues a cookie as
a bearer token used for client authentication. Due to thete+ehd protection, the



160 SSL and TLS: Theory and Practice

adversary cannot access the cookie to misuse it directlys@&@iwhat happens if the
client uses the end-to-end protected TLS session 2 to sesttiearHTTP request
message—Ilabeled “HTTP request 2” in Figure 3.10—to theesehv this case, the
two messages may be concatenated and collectively pastegldapplication. From
the application’s viewpoint, it is therefore no longer gbbsto distinguish the two
messages—they both appear to originate from the same saetcthe client. If, in
our example, HTTP request 2 started with the following twadwer lines

GET /orderProduct?deliverTo=Address-2
Cookie: 7892AB9854

then the two messages would be concatenated as follows:

GET /orderProduct?deliverTo=Address-1
X-Ignore-This: GET /orderProduct?deliverTo=Address-2
Cookie: 7892AB9854

Thex-Ignore—-This: headeris aninvalid HTTP header and is therefore ignored
by most implementations. Since it is not terminated with & fiee character, it is
concatenated with the first line of HTTP request 2. This talsianeans that the
entire line is going to be ignored and hence that the reqdgsteduct is going to be
delivered taaddress—-1 instead ofAddress—-2. Note that the cookie is provided
by the client and is therefore valid, so there is no reasomosgrve the request. The
problem is not the cookie, but the fact that some unauthatetitdata is mixed with
authenticated data and passed together to the applicatiisleads to a situation,
in which the application falsely suggests that either datauithenticated. Also note
that there are many possibilities to exploit this vulneligband to come up with
respective (renegotiation) attacks. Examples are givethénoriginal publication
and many related articles, as well as a recommended reddihgas posted shortly
after the original publicatiof®

Renegotiation attacks are conceptually related to cribsssquest forgery
(CSRF) attacks, so, in general, any protection mechanisin place against CSRF
attacks also helps mitigating renegotiation attacks Heurhore, because the renego-
tiation feature is optional (as mentioned above), a simptestraightforward possi-
bility to mitigate such attacks is to disable the feature aotisupport renegotiation
in the first place. Less strictly speaking, it may be suffiti@nonly disable client-
initiated renegotiation (as a side effect, this also prstélee server against some
DoS attacks). But since disabling renegotiation is not géyaossible, people have
come up with other protection mechanisms. Most importatitly IETF TLS WG
has developed a mechanism that provides handshake réoagniteaning that it

53 http://www.securegoose.org/2009/11/tls-renegotiatulnerability-cve.html.



TLSProtocol 161

must be confirmed that when renegotiating both parties Havesame view of the
previous handshake, i.e., the one that is being renegotidssintroduced in Section
3.4.1.19, thereis a distinct TLS extension, i.e.,tk@egotiation_info exten-
sion specified in [30], that serves this purpose. In essénbmds the renegotiated
handshake to the previous one. In our example from Figur@ 84dndshake 2 has
no previous handshake, and if it had, then it would be diffefeom handshake 1
and unknown to the adversary. This seems to mitigate thekatta

To invoke the secure renegotiation mechanism, the cliethtla® server must
bothinclude therenegotiation_info extension in their hello messages. In the
initial handshake, the extensions are empty, meaning ligagxtensions comprise
no data. The client and server only signal to each other tiegtsupport the exten-
sion. If, at some later point in time, the client wants to seburenegotiate, it adds
anotherrenegotiation_info extension to its CIENTHELLO message. This
time, the extension comprises data, namely the clientssidei fy_data field of
the ANISHED message that was sent in the handshake for the session & teant
renegotiate. Remember from Section 3.2.4 thatithei fy_data field comprises
a hash value of all messages sent in a handshake beforents®iED message. It
thus stands for a particular handshake and a particulaipsessthe server is will-
ing to securely renegotiate this session, then it sends &&HdKRVERHELLO mes-
sage with arenegotiation_info extension that comprises both the client-side
verify_data field of the client's FNISHED message and theerify_data
field of the server's lNISHED message—both from the previous handshake. Intu-
itively, by including one or twarerify_data fields from the previous handshake,
the parties ensure that they both have the same view of th@psehandshake, and
hence that they actually renegotiate the same session.

There is an interoperability issue: Because some SSL 3.8,1TQ, and some-
times even TLS 1.1 implementations have problems gragefyioring empty ex-
tensions at the end of hello messages, people have come haméther possi-
bility to let a client signal to a server that it supports sectenegotiation. Instead
of sending an emptyenegotiation_info extension in the OENTHELLO
message, the client includes a special signaling ciphee sailue (SCSV), i.e.,
TLS_EMPTY_RENEGOTIATION_INFO_SCSV with byte code OXO0FF, in the list
of supported cipher suites [30]. This also tells the sefvarit is willing and able to
support secure renegotiation. The actual secure renégatthen remains the same
(and hence the secure renegotiation extension still ne@els supported by either
party). The only point in usingLS_EMPTY_RENEGOTIATION_INFO_SCSVis
to avoid any empty extension at the end of a hello message.shiould make some
implementations more stable.

The goal of thecenegotiation_info extension isto link the session that
is being renegotiated to the handshake of the previousoseddiis is to mitigate the



162 SSL and TLS: Theory and Practice

renegotiation attack and its variants. A client that iskieitt into renegotiation does
not automatically provide theerify_data field from the previous handshake.
Also, if a MITM modified the CIENTHELLO message to supply the required data,
then the respective message modification and integritylossd be detected at the
TLS level.

Between 2010 and 2014, it was therefore believed that thegaration at-
tack was successfully mitigated. In 2014, however, it waswshthat this was
not completely the case, and that in some situations a réiaéigo attack re-
mains feasible, even if the secure renegotiation mechaeisipowered by the
renegotiation_info extension is putin place [66]. The respective attack em-
ploys three handshakes and is therefore caligtie handshake attack, or 3SHAKE
attack, in short. The attack is fairly sophisticated and we onlegflyisketch it here.

In a triple handshake attack, the MITM is to cleverly exptbé following two
weaknesses of the TLS handshake protocol:

e First, the MITM can establich two sessions—one between likatand the
MITM and the other between the MITM and the server—that stfa@esame
master key and session ID. If, for example, RSA is used for&eashange,
then the MITM can simply decrypt the premaster secret froendient and
reencrypt it with the public key of the server. The randoruesl are left
unchanged, and the session ID from the server is relayedtbatie client.
After the handshake, the master keys and session IDs of thedwsions are
the same. But while the client is tricked into thinking thizhas established a
session to the server (where in fact it has a session with théy) the server
thinks that it is connected with an unauthenticated clievtt bas no way of
detecting the existence of the MITM. Technically speakthgs type of attack
has been known as amknown key-share attack [67].

e Second, if an unknown key-share attack is followed by a sasgisumption,
then the resulting two sessions do not only share the sameemeay and
ID, but they also share the samerify data fields in their respective
FINISHED messages. This is mainly due to the fact that certificatesatre
used (and hence do not appear) in a session resumption.

Combining these two weaknesses, the MITM can establishéasiegns—one
to the client and another to the server—that use the samed fy_data field in
their ANISHED messages and hence also share the sanegotiation_info
values. This, in turn, means that the renegotiation attackbe mounted again (as a
3SHAKE attack), and that theenegotiation_info extension does not really
solve the problem. Referring to its name, the 3SHAKE attawrkgrises three steps
or handshakes, respectively.



TLSProtocol 163

e In step 1, the MITM mounts an unknown key-share attack tobéistatwo
sessions that share the same master key and session ID. s\mlf/uhe case
in a MITM attack, the first session is between the client ardNHTM, and
the second session is between the MITM and the server.

e In step 2, the MITM waits until the client resumes its sesslorcontrast to a
renegotiation that requires theeri fy_data from the ENISHED message
of the previous handshake, only the session ID and the niastere required
to resume a session. The MITM can do this also for his or hesi@edo
the server. In the end, there are two fully synchronizedisesghat share
the samererify_data field. After these preparatory steps, the MITM can
actually mount the renegotiation attack.

e Instep 3, the MITM first sends HTTP request 1 to the server bed has the
server trigger a renegotiation that requires client-sidéentication using,
for example, a certificate. The respective handshake tdkes petween the
client and the server. To mitigate “normal” renegotiatidtaeks, the client
adds thercenegotiation_info extensionto its CENTHELLO message.
The data of this extension refers to therify_data field of the previous
session to the MITM. According to what we have said beforig,iththe same
value as thererify_data field of the previous session between the MITM
and the server. So it can be verified by the server, and therstns believes
that the previous session to the MITM is the one that is beémggotiated.
When the now authenticated client then sends an HTTP regteste server,
both requests are concatenated and collectively passee &pplication. This
means that the same attack becomes feasible, and hencedtaevback
where we started.

The bottom line is that triple handshake attacks can stilinoeinted in spite
of the renegotiation_info extension. The underlying problem is that an
unknown key-share attack combined with a subsequent segsamption allows a
MITM to establish two fully synchronized sessions. Thisrigeteven if the sessions
are bound to different server certificates (the session tlanclient to the MITM
is bound to the MITM’s certificate, whereas the connectiamfthe MITM to the
server is bound to the server certificate). One way to miigae unknown key-
share attack is to make the generation of the master key rigtdepend on the
premaster secret and random values selected by the clig¢theserver, but also on
the server certificate. Even more generally, it is reas@@ainake the master secret
depend on all handshake messages that have been exchamgedgly. Because the
CERTIFICATE message comprises the server certificate, this ensureth¢hataster



164 SSL and TLS: Theory and Practice

secret also depends on the server certificate, and hence that an unknown key-share
attack is infeasible to mount.

The extended_master_secret extension specified in RFC 7627 [28]
follows this line of argumentation (cf. Section 3.4.1.19). It ensures that the master
secret that is generated—Ilet us calbitended master secret—is unique. In either
case, it ensures that different sessions established to different servers have different
extended master secrets. Remember from Section 3.1.1 that a master secret is
normally generated as

master_secret =
PRF (pre_master_secret, "master secret",
client_random + server_random)

If the extended_master_secret extension is negotiated, then the master
secret is generated in a slightly different way:

master_secret =
PRF (pre_master_secret, "extended master secret”,
session_hash)

Note that this construction uses another label and that the client and server random
values are replaced with a session hash. This is a hash value computed over the
concatenation of all handshake messages (including their type and length fields)
sent or received, starting with thee @NTHELLO message and up to and including

the QLIENTKEYEXCHANGE message. This includes, among other things, the client
and server random values and the server certificate. Since TLS 1.2, the hash function
is the same that is also used to compute the@ SHED message. For all previous
versions of the TLS protocol, the hash function employs the concatenation of MD5
and SHA-1. We have seen and discussed this before.

If a TLS session is established with both thenegotiation_info and
extended_master_secret extensionsin place, then it is reasonable to assume
that the respective session is going to be secure against all types of renegotiation
attacks. At least nobody has found a possibility to mount yet another attack in this
setting.

)| that
abil-
em
that
ext


U80707530
Rechteck


	Leere Seite



